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Abstract

We propose a sketch-based 3D shape retrieval system that is substantially more discriminative and robust than

existing systems, especially for complex models. The power of our system comes from a combination of a contour-

based 2D shape representation and a robust sampling-based shape matching scheme. They are defined over dis-

criminative local features and applicable for partial sketches; robust to noise and distortions in hand drawings;

and consistent when strokes are added progressively. Our robust shape matching, however, requires dense sam-

pling and registration and incurs a high computational cost. We thus devise critical acceleration methods to

achieve interactive performance: precomputing kNN graphs that record transformations between neighboring

contour images and enable fast online shape alignment; pruning sampling and shape registration strategically

and hierarchically; and parallelizing shape matching on multi-core platforms or GPUs. We demonstrate the effec-

tiveness of our system through various experiments, comparisons, and user studies.

1. Introduction

Recent advances in scanning technologies and modeling
tools have dramatically increased the quantity and complex-
ity of publicly available 3D geometric models. For example,
TurboSquid, an online commercial repository of 3D mod-
els, contains over 200,000 models. Yet the query methods
available there are rather basic: one can either search models
via keywords, or browse models pre-organized into different
categories. The seminal work of Funkhouser et al. [2003]
illustrates the simplicity and power of sketch-based inter-
faces for 3D model retrieval. It not only suggests an easy-
to-learn and intuitive-to-use search method, but also opens
up a new door to user-driven 3D content creation. Users can
now find, reuse, and alter existing contents, all by sketch-
ing [SI07, LF08, CCT∗09].

However, the progress of sketch-based model retrieval has
been slow. There are fundamentally two challenges. First,
representing 3D objects using 2D drawings is inherently am-
biguous. Most 3D search engines utilize shape descriptors
that measure global geometric properties of objects [Lof00,
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ETA01,OFCD02,FMK∗03]. Global shape signatures are fast
to compare for shape matching, but cannot discriminate well
large amounts of similar models, especially for models with
complex interior structures. The proliferation of complex 3D
models calls for 2D shape representations that are more dis-
criminative than before.

Second, the success of sketch-based interfaces highly de-
pends on the quality of the query sketch, and unfortunately
users who do not have an artistic background usually can-
not draw very well. Figure 1(b) is an illustration of this
point. Malformed strokes, such as broken or repeat strokes,
and noise and outliers representing funny details and deco-
rations, are all common in sketches drawn by novice users.
Shape distortions, including translation, rotation, scaling and
shearing, are also inevitable in hand drawings. Users are typ-
ically only good at expressing visual semantics rather than
exact shapes and locations. Therefore, noise and distortions
have to be dealt with to better capture users’ real drawing
intent, which can potentially help improve the quality of re-
trieval. Furthermore, non-trained users not only draw poorly,
but also draw slowly, especially for complicated multi-stroke
objects. The ability to query with incomplete sketches can
greatly improve search efficiency, and foster a progressive
search style where interactive visual feedbacks can be lever-
aged to enhance the query precision.
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Figure 1: User study: (a) front-view pictures of the target models are given to users as reference. (b) Some user-drawn partial

and complete sketches, which all successfully retrieved the targets using our method. (c) Three example query sketches and

their corresponding retrieval results using our method. (d) The retrieval results using a search algorithm similar to [FMK∗03].

In response to the above challenges, we propose

• vectorized contours as the 2D shape representation, and
a shape similarity measure computed locally from these
contours. Together they enable more discriminative and
partial shape comparison.

• a sampling-based robust shape matching algorithm with
acceleration strategies that are critical for performance .

More specifically, our shape representation and similarity
measure are more discriminative than global shape descrip-
tors and more precise than unorganized local features. They
can also filter certain types of noise and outliers, and nat-
urally support partial matching not well-defined on global
shape descriptors.

Our sampling-based robust shape matching is the key to
coping with noise, distortions, malformed strokes, and par-
tial queries. Our algorithm follows the RANSAC frame-
work [FB81] and is robust to noise when a sufficient num-
ber of sample points are tested. However, we test samples
in a deterministic fashion to produce consistent query re-
sults. Moreover, our algorithm utilizes confined affine trans-
formations, affine transformations that are close to similar-
ity transformations, to handle small affine distortions such
as non-uniform scaling and shearing. The limited affinity
lowers the requirement of high-quality user drawings, im-
proves the discriminative power of the search algorithm, as
well as avoids possible confusing retrieval results from un-
constrained affine-invariant matching.

Sampling-based registration incurs a high computational
cost, however. We devise two critical acceleration tech-
niques to achieve interactive performance. First, we intro-
duce transformation graphs, which encode the transforma-
tions between neighboring nodes. We organize vectorized
contour images into kNN graphs based on their similarity,
and precompute transformation graphs which later enable
fast online shape alignment. Second, to reduce the cost of
dense sampling and registration, we prune samples using ge-
ometry invariants and align shapes in a hierarchical fashion.
We also implement parallelized versions of our algorithms
on multi-core platforms and GPUs that are evermore com-

monplace today. To the best of our knowledge, our work is
the first successful application of sampling-based matching
for sketch-based retrieval of 3D models.

We test the discriminative power, robustness, and perfor-
mance of our system with a medium-scale database of 5,000
3D models. Query precision and user satisfaction are signifi-
cantly improved compared to previous methods. On average
a single query takes less than two seconds on our eight-core
desktop, and less than one second on our mid-range Graph-
ics card. Our system is adequate for in-house repositories or
in-game catalogs, and provides a solid point of departure for
discriminative and robust Internet-scale shape retrieval and
re-ranking.

Figure 2 shows the flowchart of our system. Database pre-
processing is done offline as described in Section 3. The
similarity measure and sampling-based shape matching are
detailed in Section 4, together with critical acceleration
schemes. Section 5 demonstrates the effectiveness of our
system through a variety of experiments, comparisons, and
user studies. Finally, we discuss the limitations and possible
future directions of this work.

2. Related Work

3D Shape Retrieval: Various global shape descrip-
tors, such as Topology information [HSKK01], statistics
of shapes [OFCD02], and distance functions [KCD∗02,
PSG∗06], have been developed for 3D shape retrieval. We
refer the interested readers to survey papers for more com-
plete discussions [TV08]. Applications in shape segmen-
tation and example-based modeling have stimulated algo-
rithms that support part-in-whole shape retrieval, through
a similarity measure that integrates a distance field over
the entire mesh surface [FKS∗04]. Recently a more ambi-
tious goal is to design deformation-invariant shape descrip-
tors [Rus07]. A set of local features is proposed for priority-
driven partial matching [FS06]. 3D local features have also
been incorporated into the bag-of-words model for 3D shape
retrieval [FO09, BBGO11].

2D Shape Matching: Sketch-based interfaces are intuitive

c© 2011 The Author(s)
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Figure 2: The proposed sketch-based model retrieval sys-

tem. In the offline stage, 3D models are parameterized into

2D contours, and then organized into transformation graphs

based on their similarity. At runtime, the shape matching al-

gorithm compares query sketches with contour images in the

transformation graphs. The user can iteratively refine her

sketch based on visual feedbacks from the returned models.

to use for 3D shape retrieval and modeling [FMK∗03,
IMT99]. Reconstructing 3D models directly from 2D
sketches is a challenging task, however. Thus a com-
mon practice is to convert 3D models into 2D representa-
tions, and then investigate the similarity between the query
sketch and the planar representations using 2D shape match-
ing methods. Many 2D shape signatures have been pro-
posed [CNP04]. The Princeton search engine computes a
Fourier descriptor of the boundary distance transform, which
is rotation and translation invariant [FMK∗03]. Boundary
information alone cannot discriminate internal structures
though. In [HR07], Fourier descriptors plus 2.5D spherical
harmonic coordinates and Zernike moments are used as the
classifier. Diffusion tensor, which characterizes the bound-
ary direction information, is also applied to sketch-based 3D
shape retrieval [YSSK10]. They all require, however, com-
plete input sketches. More recently, bag-of-features is inves-
tigated for sketch-based shape retrieval [EHBA10]. It is not
obvious how to handle affine distortions in the bag-of-words
framework. Affine-invariant image contour matching for ob-
ject recognition does not handle noise and outliers in hand-
drawn strokes [MCH10].

Our 2D vectorized contours and similarity measure extend
the above mentioned distance functions, with more focus on
handling inferior drawings, supporting a progressive sketch-
ing style, and improving the discriminative power. Distance-
based matching methods, however, generally have poor in-
dexing efficiency. Various data structures have been pro-
posed to improve its efficiency, including the k nearest
neighbors (kNN) graph [SK02]. We organize 2D contours
into kNN graphs as well, and augment the graph edges with
precomputed registration between neighboring nodes.

Shape Registration: The task of shape registration is to

align two shapes in a shared coordinate system. Most shape
registration algorithms are based on searching point corre-
spondences. Local descriptors, such as spin images, shape
contexts, and multi-scale SIFT-like features, have been pro-
posed to locate corresponding points for computing an ini-
tial alignment [BMP02, LG05]. Then refinement algorithms
aim to improve the initial alignments, usually with an opti-
mization framework, such as the well-known ICP algorithm
for optimal rigid transforms between shapes [BM92]. Align-
ing details calls for non-rigid registration mechanisms, such
as thin-plate splines, and part-wise or point-wise transfor-
mations [IGL03, BR07]. However, it is difficult to find cor-
respondences robustly with local shape descriptors alone,
especially for noisy input. State-of-the-art alignment al-
gorithms [IR99, AMCO08] sample wide bases, i.e., any
three distant non-collinear points, randomly from the source
shape, and try to match them to all or selected bases in the
target mesh. The cost of dense sampling and registration,
however, is not affordable in one-to-many matching appli-
cations like ours. We adapt the wide base sampling and reg-
istration approach to robust 2D shape matching, and push its
performance into the interactive regime.

3. Database Preprocessing

We construct a database containing 5,000 3D models, in-
cluding animals, plants, humans, aircrafts, houses, furni-
ture, tools and devices etc. We start from all the mod-
els in the Princeton Shape Benchmark (http://shape.
cs.princeton.edu/benchmark/), which contains 1815
models. We then expand the database with models of
the same categories from the INRIA GAMMA 3D mesh
research database (http://www-roc.inria.fr/gamma/
download/). Appendix A of the supplemental material re-
ports the detailed constitution of our database.

3.1. 2D Shape Representation for 3D Models

We achieve 3D shape matching by comparing their 2D
representations. Each model is firstly normalized and ori-
ented [FMK∗03]. We then render perspective 2D contours
of each model from seven selected views: three canonical
views (front, side, and top), plus four corner views from the
top corners of its bounding cube. We use the word contour

to refer to the aggregation of boundaries, silhouettes, sugges-
tive contours [DFRS03], and salient feature lines [HPW05].
These contours represent the 2D shape of a 3D model from
a particular pre-selected viewpoint, for example Figure 3(b).
Contour images are directly read from the GL render buffer,
with pixels on the contours labeled black.

We then vectorize the contour images by fitting line seg-
ments to the black pixels with Robust Moving Least-Squares
(RMLS) [FCOS05]. RMLS is not only robust with respect to
noisy contours, but also able to detect sharp features such as
corner points. The original contour images are turned into

c© 2011 The Author(s)
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polylines as shown in Figure 3(c). From polylines we then
generate a thickened contour image as illustrated in Figure
3(d). The polylines grow from one pixel to δw pixels on
both sides, similar to a feathering effect in image processing.
Each black pixel on a widened line records the line segment
it associates with, its distance to the original line shaft, and
the polyline it belongs to. In case one pixel lies in the feather
areas of multiple line segments, we pick the closest shaft for
it. White pixels are not associated with any line segments
and carry no information, thus are discarded by our image
compression step using perfect spatial hashing [LH06]. The
full database of 5,000 3D models takes about 3GB and their
contour images about 1.5GB to store.

Note that unlike methods that use distance functions or trans-
forms, our vectorized contours only consider pixels near im-
portant and existing features. This not only alleviates the in-
herent large memory consumption of previous methods, but
also helps to ignore noisy strokes and pixels near insignifi-
cant details that may not be present in similar models.

3.2. Transformation Graphs

When a user inputs a query sketch, our shape matching al-
gorithm detailed in §4 will select the best matching con-
tour images and return their corresponding 3D models. A
straightforward matching algorithm would be to indepen-
dently compare the query sketch with each contour image
of all 3D models in the database. However, this will be com-
putationally prohibitive even for medium-sized databases, if
a robust and accurate shape matching method is used. We
thus organize contour images into kNN graphs based on
their similarity. These graphs further embed the registration
among the database contour images, and can greatly enhance
the retrieval speed (§4.3).

The nodes of a transformation graph are contour images of
all the 3D models from a specific view. Therefore there are
seven graphs in total. We connect each graph node with its
k = 20 nearest neighbors. The distance between nodes is de-
termined by their similarity score computed as will shortly
be described in §4.1. To reduce the computational cost of
graph construction, we locate nearest neighbors by first com-
paring 3D shape distributions [FMK∗03] to quickly filter out
dissimilar models. Only the contour images of the top-100
matching models are further ranked using our shape match-
ing algorithm (§4.2), and the 20 nearest neighbors are se-
lected. The affine transform between two neighboring nodes
estimated from the shape matching step is then recorded in
their linking edge.

The seven transformation graphs of 5,000 models currently
take about four hours to compute on a Dell desktop with dual
quad-core Intel Xeon E5540 processors, and about 18MB to
store. When additional models are added to the database in-
dividually, we can simply query with their contours and link
them to the top matches. When models are added in batches,

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: 2D shape representation and matching. (a) A 3D

head model. (b) GL-rendered contours of its front view. (c)

Vectorized contours and sampled points. Orange dots are in-

terest points. To avoid clutter, we only show a few of the sam-

pled points. (d) Thickened contour image. (e) One partial

sketch from users. (f) One wide base (red dots). (g) Coarse

alignment using only interest points. (h) Refined alignment

between the sketch and the contour image.

we can either rebuild the graphs or use more advanced graph
updating techniques [HY07].

4. Sampling-based Robust Shape Matching

We propose a novel sampling-based 2D shape matching
method to estimate the similarity between query sketches
and contour images of 3D models. The same shape match-
ing algorithm is also used to organize contour images into
transformation graphs during database preprocessing. We
will first describe our similarity measure designed for vec-
torized contours, and then detail the sampling-based robust
shape registration method.

4.1. 2D Similarity Measure

Our 2D shape similarity function only considers shape ele-
ments that lie close to each other within a distance threshold
δw. Specifically, a user-drawn sketch S is first vectorized just
as what has been done to the contours read from the frame
buffer. We then sample a set of points pi from S as shown in
Figure 3(c). The samples are drawn uniformly from the start
to the end of each polyline. Now given a contour image T of
a 3D model, the similarity score f (S,T ) between S and T is
defined as a weighted sum of f (pi,T ), the proximity of each
point pi to T , as follows:

f (S,T ) =
1

m

m

∑
i=1

wi f (pi,T ) (1)

where m is the number of samples in S, and wi = 1 by default
for regular strokes. The point-to-shape distance is defined as

f (p,T ) =







e
(
−d(p,lTp )

δd
+

−|k(lSp)−k(lTp )|

δk
)

d(p, lT
p )< δw

0 otherwise

(2)

c© 2011 The Author(s)
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where lS
p denotes the line segment in S that point p belongs

to, and lT
p refers to the closest line segment to p in T . d(p, lT

p )

is the distance between p and lT
p , and k(lS

p) and k(lT
p ) are the

slopes of lS
p and lT

p . The negative exponential function maps
a smaller distance to a larger value, so that shapes close to
each other will have higher similarity scores.

Note that when the point-to-line distance d(p, lT
p ) is greater

than δw, the point is given a zero score and ignored in
the similarity computation. This helps to deal with noisy
hand drawings. When the point-to-line distance is within the
threshold, we mark the polyline that p belongs to in S as a
matched polyline. We then scale the sum f (S,T ) in Equa-
tion 1 by a concave function of the ratio between the length
of matched polylines and the total length of all polylines.
Thus simpler models rank higher than complex models that
match equally well to features present in the sketch drawn
so far. As more strokes are added and the complexity of
the sketch progresses, the ordering will gradually reverse be-
cause complex models will score higher with more matching
features.

4.2. Sampling-based 2D Shape Registration

The above similarity score represents shape similarity only
when computed from shapes properly aligned. We thus need
to search for an affine transformation that best aligns a sketch
S with a target contour image T . The basic procedure is to
pick a base p0, p1, p2, i.e., three non-collinear points, from
S, and another base p′0, p′1, p′2 from T . The 2D affine trans-
formation T = {A , t} that transforms the base of S into the
base of T can be computed as follows:

A =

(

∑
i

(p
′
i −o

′)t(p
′
i −o

′)

)(

∑
i

(pi −o)t(pi −o)

)−1

t = o
′−A o (3)

where o and o′ are the mean position of p0, p1, p2 and
p′0, p′1, p′2 respectively. T is then used to transform S to an
intermediate sketch S′, and the similarity score f (S′,T ) is
computed. A high score suggests that a good registration be-
tween S and T has been found, and that they are highly simi-
lar shapes. Many bases from both shapes need to be sampled
and compared to achieve a robust estimation. We then record
the transformation that yields the highest similarity score as
the final registration.

A naive implementation of the above registration process
comparing all possible bases, however, will lead to an algo-
rithm of time complexity O(m3n3), where m is the number
of points sampled from S, and n is the number of points sam-
pled from T . To accelerate the performance, we develop (a)
an effective base pruning strategy based on the wide-base
rule and similarity congruency; (b) a hierarchical alignment
scheme to combine fast coarse estimation with local refine-
ment; (c) parallel CPU and GPU implementations. These

three accelerations combined significantly improve the per-
formance as well as robustness of the naive algorithm.

4.2.1. Base Pruning

Any three non-collinear points sampled from the con-
tours can serve as a base. However, many of them form
rather small triangles and are not stable for registra-
tion [AMCO08]. Wide-bases, points that are sufficiently dis-
tant and form a relatively large triangle, however, are more
robust to noise [GMO94]. We first compute the Oriented
Bounding Box (OBB) of S, then draw the diagonals of the
OBB. We pick the end points (blue points in Figure 3(f))
among all the intersection points on the diagonals, and lo-
cate the closest sample points (red points in Figure 3(f)).
The chosen sample points form four triangles at the most,
and the three points that make the largest triangle are cho-
sen as a wide base. If we wish to sample m̄ wide bases from
S, we can rotate the OBB diagonals m̄ times, with an angle
increment of π/m̄ each time.

For each chosen wide base from S, testing its registration
with all bases in T still results in unacceptable performance.
Instead, we only select promising bases from T for fur-
ther examination. Given a base {a,b,c} of S, we compute
a similarity-invariant tuple (r,θ) as follows:

r = ‖b−a‖/‖c−a‖

θ = angle(
−→
ab,−→ac) (4)

It is easy to verify that (r,θ) is invariant under similarity
transforms. For a base {a,b,c} of S and a base {a′,b′,c′}
of T , they are similarity congruent if (r,θ)≈ (r′,θ′). In case
only two points {a′,b′} are given, we can compute c′ conve-
niently so that {a,b,c} and {a′,b′,c′} are similarity congru-

ent. That is, we first rotate vector
−−→
a
′
b
′ by angle θ, and then

scale the rotated vector by ratio r.

So after a wide base {a,b,c} is picked from S, we traverse
all the 2-point pairs {a′,b′} in T , and compute c′ as de-
scribed above using (r,θ). All samples in T that are close
to c′ within a specified threshold δw are chosen as the third
point of a candidate matching base. Since the contours are
already thickened by δw, we can easily verify the existence
of c′ on the thickened 2D contours. This pruning strategy
is in spirit similar to that of [AMCO08]. However, we use
similarity congruency rather than affine congruency to limit
the search space of the affine transformations. The radius
of the circular window δw determines how much distortion
our affine transformations can accommodate. Note that even
though we use 3-point bases, only 2-point pairs in T are tra-
versed. Therefore, the time complexity of traversing all pos-
sible bases in T for one sampled base in S is reduced from
O(n3) to O(kn2), where k is in proportion to δw.

As mentioned in the introduction, limited affinity is desir-
able in several ways. Affine distortions are common in hand

c© 2011 The Author(s)
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Algorithm 1 : HAlign(SAllPts,SInterestPts,TAllPts,TInterestPts)

Input: all sampled points on S; interest points on S; all sampled

points on T ; interest points on T

Output: the best affine transformation to align S and T

ss← 0 {initialize the similarity score}
T ← null {initialize the affine transformation}
for i = 1 to m̄ do

wb← FindWideBase(SInterestPts)
(T ′, ss′)← AlignBases(TInterestPts, wb)
if (ss′ > ss) then

T ← T ′ {update the best transformation}
ss← ss′ {update the best score}

end if

end for

for i = 1 to m̄ do

wb← FindWideBase(SAllPts)
(T ′, ss′)← RefineAlignment(TAllPts, wb, T )
if (ss′ > ss) then

T ← T ′

ss← ss′

end if

end for

return (ss,T )

drawings so we have to deal with them in shape match-
ing. But unconstrained affine matching can cause confus-
ing retrieval results. For example, a square can be perfectly
matched to an elongate rectangle via an unconfined affine
transformation. However, the users who draw a square, most
likely a distorted square rather than a perfect square, might
be confused to see skinny rectangles displayed in the query
results. We will further illustrate this point in one of the user
studies (§5.1). Our above base pruning approach originates
from similarity congruency, and thus naturally supports lim-
ited affinity.

4.2.2. Hierarchical Alignment

The cost O(kn2) can still be prohibitive when n is large for a
complex shape T . We therefore develop a two-tier alignment
scheme as shown in Algorithm 1. A coarse registration is
first estimated quickly from only important feature points in
T . A common practice in shape analysis is to choose points
of high curvature as important feature points. We have de-
tected corner points between line segments when we vec-
torize contours. In addition, we consider intersection points
of line segments as well. We use interest points to refer to
all the corner and intersection points. The number of inter-
est points ñ is on average about one fourth of n in our ex-
periments. The first for-loop in Algorithm 1 corresponds to
this fast estimation of T with interest points only, and Fig-
ure 3(g) shows an initial alignment estimated from this step.

Then a refinement process further improves the coarse reg-
istration as shown in the second for-loop of Algorithm 1.
Given a base {a,b,c} from S, we first transform {a,b,c}
into {a′,b′,c′} using T , then use samples of T within a cir-

(a) (b) (c) (d) (e)

Figure 4: Transformation Graphs can help eliminate false

positives. (a) Sketch of a house. (b) A vehicle model. (c)

Contour image of (b)’s top view. (c) The best alignment be-

tween (a) and (c) by direct comparison has a high similarity

score 0.4263. (d) The best alignment through transformation

graphs scores 0.1878.

Par. Description Value
δw distance threshold in Sec. 3.1 8 pixels
δd variance of distance in Eq. 2 3.0
δk variance of slope in Eq. 2 0.3
δr refinement threshold in Sec. 4.2.2 5 pixels
m̄ number of tested bases in Alg. 1 12
ns number of seeds in Sec. 4.3 132

Table 1: Parameters used for all experiments.

cular window of radius δr centered at a′,b′,c′ for possible
better alignment. This tuning step typically takes near con-
stant time, and Figure 3(h) illustrates the refinement effect.

4.2.3. Parallel Implementations

The proposed sampling-based matching algorithm is easy
to parallelize: the comparisons of different contours are in-
dependent, and the registration of different bases from the
same pair of shapes is parallelizable. Today multi-core ma-
chines are common, and we can easily achieve an eight-fold
speedup on an eight-core desktop. Graphics cards are also
readily available. We have achieved a significant speedup
using a CUDA implementation of the proposed algorithm
on our single-core NVIDIA GeForce GTX 285. Detailed
performance statistics are shown in Table 2 and will be ex-
plained in the Results section.

4.3. Transformation Graph Assisted Retrieval

A straightforward implementation of the retrieval system
aligns a query sketch to each stored contour image inde-
pendently on the fly, and this is simply too slow for our
application. We can actually achieve much faster registra-
tion between the input and contour images, with the help
of precomputed transformation graphs. In the preprocessing
stage, in addition to constructing graphs as described in §3.2,
we also cluster the graph nodes by a simple region growing
method. An initial image is randomly selected from a graph
as the seed, and we traverse the whole graph following the
best-first order. When the similarity between the seed and
the current node is lower than a chosen threshold, we start a
new cluster with the current image as a new seed.

At runtime, the hierarchical alignment scheme is first applied
to register the query sketch with all the ns seeds, and the re-
sults are sorted and pushed into a heap. We then traverse

c© 2011 The Author(s)
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Model: #Points Chair: 170 Car: 215 House: 187 Human: 111
XXXXXXXX

alg. comps
perf.

time AP time AP time AP time AP

Baseline 2061.16 0.610 1681.24 0.490 2303.32 0.261 2106.56 0.295
Hierarchical Alignment 236.48 0.574 177.83 0.402 401.57 0.246 320.03 0.299
Transformation Graph 10.39 0.716 5.94 0.670 12.93 0.414 9.68 0.373

CPU Parallelism 1.35 0.716 0.80 0.670 1.67 0.414 1.21 0.373
GPU Acceleration 0.80 0.716 0.47 0.670 0.93 0.414 0.66 0.373

Table 2: Performance: timing in seconds, and quality measured by average precision (AP).

the graphs in the best-first order. The current best matching
image is popped up, and its neighbors are examined with re-
spect to the query sketch. To obtain the affine transform be-
tween the query and a neighbor of the current node, however,
we only need to concatenate the transformation between the
query to the current node, which is already known, with the
transformation between the current node and its neighbor,
which is precomputed and stored on the graph edge. A full-
blown registration is not necessary anymore. Nevertheless,
to limit error accumulation, we treat the composite transfor-
mation only as an initial guess, and perform a refinement
procedure same as described in Algorithm 1. Table 2 reports
the significant performance gain achieved by the transforma-
tion graph assisted retrieval scheme.

A pleasant surprise is that the retrieval quality based on
transformation graphs is also improved, as shown by the av-
erage precision in Table 2. This is counter intuitive on the
first thought. Concatenating transformations accumulates er-
rors, and should have negative effects to the registration
quality, if having any effect at all. A reasonable explana-
tion is that the graphs built on our similarity measure ap-
proximate the local manifold inside the geometry space of
all database models. Thus, navigation through the graphs
follows paths on the manifold from the query to the best
matching shapes. This helps to filter out false positives and
improves precision. Our finding is consistent with the results
reported in manifold ranking methods [ZWG∗04]. As illus-
trated in Figure 4, the direct registration between two unre-
lated models might occasionally succeed numerically with
poor semantic quality.

5. Results

Parameters: We test our shape retrieval system via various
query examples with the same set of parameters shown in
Table 1. Although these parameters are manually tuned, we
found the landscape of performance vs. parameters rather
smooth. The query results are not super sensitive to any of
the parameters. Alternatively an offline procedure that ex-
plores the parameter space in a systematic fashion may fur-
ther improve the system performance.

Performance: Figure 5 plots the average precision-recall
curves tested on the full database. The left diagram illustrates
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Figure 5: Average precision recall curves: (left) query re-

sults with 36 contour images of representative database

models, illustrating the better discriminative power of our

method; (right) query results with 50 hand-drawn sketches

from the user study, showing the necessity of affine transfor-

mation in shape matching.

the better discriminative power of our method, using noise-
free contour images of 36 representative models of various
categories as the query inputs. The selected models are at-
tached in Appendix B of the supplemental material. The
BD method refers to the boundary-descriptor based method
of [FMK∗03]. The BDA method refers to our augmented
version of the BD method, where not only boundaries but
also interior contours are used in computing the shape de-
scriptor. The results in Figure 1(d) is generated with BDA.
Note that the statistics of BD and BDA does not differ signif-
icantly, but for cases where interior contours are important,
such as the Shrek head, BDA can generate slightly better re-
sults sometimes. The right diagram of Figure 5 shows the ne-
cessity of incorporating affine transformation in dealing with
distortions in hand-drawn sketches. The precision of our
shape matching algorithm is better than its pure similarity-
transformation based counterpart. The 50 query sketches are
obtained from the second user study detailed in Section 5.1.

Table 2 reports the detailed performance statistics with four
of the models used in the above precision-recall experi-
ment. Timing is measured on a desktop PC of 8GB RAM
with dual quad-core Intel Xeon E5540 processors, and a
NVIDIA GeForce GTX 285 graphics card. The baseline al-
gorithm registers the sketch with contour images using our
method described up to §4.2.1. The completely naive algo-
rithm without base pruning is just too slow and erratic, be-
cause of the existence of many narrow bases. We then add
different algorithmic components in turn to see their effect
on the system performance. All components achieve signif-
icant speedups, and the most effective one is the transfor-
mation graphs. The quality of retrieval is measured by av-
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Figure 6: Example of negative (blue) and positive (red)

strokes. Top: Initial search results. Middle: Adding negative

strokes to suppress the unwanted back support style. Bottom:

Adding positive strokes to emphasize the armrests.

erage precision (AP): for each query image we compute its
precision-recall curve, from which we obtain its average pre-
cision.

Sketch-based retrieval: Figure 6 illustrates a progressive
search within 136 chair models, and the use of negative
and positive strokes. On occasions where users want to ex-
clude a certain feature, we supply negative strokes, with
stroke weight wi = −1 in Equation 1, to suppress the un-
desired parts. This is similar to the NOT Boolean operator
in keyword-based text search. Positive strokes have weight
wi = 2. The blue negative strokes in the middle row aim to
remove the unwanted style of back support in the top row,
and the red positive strokes in the bottom row emphasize the
armrests.

Partial shape matching is one of the key features supported
by our 2D shape representation and matching scheme. Given
complex models as shown in Figure 1(a), it is difficult for
a non-trained user to complete her sketch with one stroke.
Using our system, the target models are returned within the
top matches when queried with the partial sketches shown
in the leftmost column of Figure 1(b). The ability to search
from partial sketches provides fast feedback and improves
query efficiency, for general users as well as for artists.

Example-based modeling: Today shape retrieval is com-
monly used to support example-based modeling [SI07,
LF08]. We integrate one of the state-of-the-art 3D deforma-
tion techniques [KSvdP09] into our query system to assist
users in creating new models from retrieved examples. The
user chooses the most similar 3D model to her sketch, and
the deformation engine automatically deforms the model to
match its contours to the sketch. In this setting, we can cir-
cumvent difficulties like occlusions and topology ambigui-
ties typical for a modeling system that directly goes from 2D
sketches to 3D models. Figure 8 illustrates such an example.

5.1. User Studies

The first user study we performed is to validate the limited
affinity design. We prepared four pairs of 2D shapes with dif-
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Figure 7: The influence of affine distortion to perceived sim-

ilarity. For each shape pair, the original shape (red) is on

the left, and the distorted shape (cyan) is on the right. The

number under the similar and dissimilar labels reports the

number of subjects who agree with the specific choice. This

study shows that users do tolerate affine distortions, but only

to a certain degree.

ferent degrees of affine distortions. We recruited sixty sub-
jects and divided them into four groups. Each group was
asked to judge the similarity of only one pair of shapes to
avoid possible interference. Figure 7 shows the shape pairs
and the users’ choices. Users do tolerate affine distortions,
but only to a certain degree. Although it is still difficult
to quantify how perceived similarity degrades with respect
to increased distortions, this user study clearly implies that
shapes with more distortions should be ranked lower, and
shapes with severe distortions should be filtered out. Our
limited affinity shape matching captures these features natu-
rally.

Our second user study asked users to retrieve target mod-
els within the top 24 matches, i.e., the first two pages of
the retrieval results, as fast as possible and within five min-
utes. Ten graduate students with a science and engineering
background were recruited, and five of them are females. For
each test query, we give users a color print-out of the front
view of the target model as reference. The tests were con-
ducted on the same desktop for performance measurement,
with a 24" widescreen monitor. During a pilot study we
found that most novice users draw worse with our Wacom
sketch pad than with a mouse, so we simply chose mouse
for the user study. We trained each subject for five minutes:
a demonstration of our system for about two minutes, then
a user practice session about three minutes when they could
get our help if needed. The five target models are: bicycle,
sailboat, house, Shrek head, and ultraman. These models are
all used in calculating the precision/recall curves in Figure 5.
All subjects were able to retrieve the target models within
five minutes with our system. Figure 1(b) shows some of the
user-drawn sketches; and Appendix C of the supplemental
material contains all fifty sketches. Table 3 reports the time
spent by each subject and the number of search attempts un-
til they succeeded.

We also performed post-study interviews with each subject

c© 2011 The Author(s)
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H
H

H
H

A B C D E F G H I J

Ultraman 38/1 64/1 49/1 57/1 43/1 86/1 53/1 31/1 48/1 58/1
Bicycle 24/1 66/1 58/1 37/1 73/1 69/2 67/2 39/2 87/2 30/1
House 55/1 83/1 65/1 109/2 63/1 225/3 65/2 64/1 96/1 217/4

Sailboat 97/3 42/1 87/3 105/2 69/1 174/4 41/2 65/3 114/3 39/1
Shrek 88/2 207/3 247/5 57/1 101/3 287/5 202/3 87/2 111/2 38/1

Table 3: User study statistics. Number pairs indicate total query time in seconds and number of search attempts. The number

of search attempts equals the number of times a user hits the search button on the GUI.

(a) (b)

(c) (d)

Figure 8: Example-based mod-

eling. (a) A query sketch ex-

tracted from a photo. (b) Re-

trieval results. (c) The input

and the contour of the boxed

model overlapped. (d) The cho-

sen model deformed to match the

query.

(a)

(c) (d)

(b)

Figure 9: Failure

case. (a) A plant

model. (b) The con-

tour image of the

plant. (c)(d) Two

user-drawn query

sketches. Neither can

retrieve the plant.

soliciting their suggestions and feedbacks. All of them felt
the retrieval ability of our system is satisfactory; and the re-
sponse time is acceptable or fast enough. One complained
that drawing curves with a mouse was difficult. Two sub-
jects said they could not draw the relative scale and posi-
tion of geometric parts very well, and they hoped the system
could somehow handle it. We have also tried to carry out the
same study with the BD method. However, we stopped af-
ter testing with five users only. The success rate of BD was
rather low about 10%. The subjects often gave up the task,
sometimes even before they ran out of time, after seeing that
little progress could be made by revising their sketches.

6. Discussion and Future Work

Recent advances in 3D scanning technologies and model-
ing tools have dramatically increased the complexity of geo-
metric models available on the web. These models pose new
challenges for sketch-based shape retrieval systems. Input
sketches tend to contain more strokes, noise, and distortions.
We propose the use of vectorized contours for 2D shape
representation. We have also developed a robust sampling-
based shape matching algorithm. Retrieval results from our
methods are significantly better than those of previous sys-

tems. Through various critical acceleration schemes, most
importantly the transformation graphs and registration prun-
ing, we successfully pushed our system performance into the
interactive regime. With the fast progresses in parallel hard-
ware platforms today, be it CPU or GPU based, we expect
the performance even faster in the near future.

There are several limitations of this work that are relatively
easy to address. We only use contour images from seven
viewpoints to compare with the query sketch. Incorporating
more views is straightforward, although the query time and
storage do increase linearly with the number of preselected
views. The cost of transformation concatenation and similar-
ity computation is currently neglectable, so we traverse the
full graphs. With a properly designed stop criteria, we may
also terminate the graph traversal earlier and thus reduce the
number of nodes visited. This should be beneficial to the ap-
plication of our search algorithm to large scale databases.

We see many exciting but more difficult avenues for future
improvements. Currently most of our failure cases happen
when there is a mismatch between the contours automat-
ically extracted from the rendered models, and the user’s
mental image of an object. Figure 9 shows such an example.
The contours of a tree in Figure 9(b) are literally the contours
of individual leaves, yet users usually just draw stems, such
as Figure 9(c), or virtual contours of each branch, such as
Figure 9(d). This suggests different fusions of multiple fea-
tures and representations, for different categories of objects.
After all, the way we draw a table is quite different from the
way we draw a tree.

Shape matching based on global transformations may miss
users’ real intent. Taking the face matching in Figure 1(c) as
an example again, although most people are able to sketch
down important facial features and organs, non-artistic users
seldom draw proportions and locations accurately. We envi-
sion a part-wise post-refinement procedure that further par-
titions the whole sketch into independent parts, e.g., con-
nected contours, and then refines the alignment of each part.
Ideally this part-wise refinement procedure should be ex-
posed to users as an option that can be turned on and off as
needed. Along this line, feature-aware or part-aware shape
matching may also be attainable within our framework.

c© 2011 The Author(s)
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