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Fig. 1. A semi-automatic garment animation authoring workflow. Given a body animation sequence (a), the artist selects a keyframe (marked by
yellow) and inputs the shape of the garment for that frame (b), and our system learns the intrinsic properties of this design and automatically propagates this
design to other frames (marked by green). The artist may further adjust the garment animation (c) by inserting new keyframes (marked by yellow) and editing
the garment shapes of the keyframes. The animation sequence is then automatically updated by linking the keyframes with plausible transitions (highlighted
in orange boxes). Our workflow also allows the artist to modify the body animation (marked in red box) during the composition because our system infers the
garment shape from the underlying body motion at an interactive rate (d).

Authoring dynamic garment shapes for character animation on body motion
is one of the fundamental steps in the CG industry. Established workflows
are either time and labor consuming (i.e., manual editing on dense frames
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with controllers), or lack keyframe-level control (i.e., physically-based simu-
lation). Not surprisingly, garment authoring remains a bottleneck in many
production pipelines. Instead, we present a deep-learning-based approach for
semi-automatic authoring of garment animation, wherein the user provides
the desired garment shape in a selection of keyframes, while our system
infers a latent representation for its motion-independent intrinsic parameters
(e.g., gravity, cloth materials, etc.). Given new character motions, the latent
representation allows to automatically generate a plausible garment anima-
tion at interactive rates. Having factored out character motion, the learned
intrinsic garment space enables smooth transition between keyframes on
a new motion sequence. Technically, we learn an intrinsic garment space
with an motion-driven autoencoder network, where the encoder maps the
garment shapes to the intrinsic space under the condition of body motions,
while the decoder acts as a differentiable simulator to generate garment
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shapes according to changes in character body motion and intrinsic parame-
ters. We evaluate our approach qualitatively and quantitatively on common
garment types. Experiments demonstrate our system can significantly im-
prove current garment authoring workflows via an interactive user interface.
Compared with the standard CG pipeline, our system significantly reduces
the ratio of required keyframes from 20% to 1 − 2%.

CCS Concepts: •Computingmethodologies→ Shapemodeling;Neural
networks; Animation.
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1 INTRODUCTION
With the rapid development of physical garment simulation tech-
niques, it is now much simpler to create garment animations. Given
a body shape and its motion sequence, the user sets up a simulator
with simulation parameters (e.g., time scale, etc.), inputs the gar-
ment material properties (e.g., bend, stretch, etc.) and environment
condition (e.g., gravity, air drag, etc.), and a simulation system can
automatically produce a physically plausible garment animation.
Understanding the effect of each simulation parameter, however, is
difficult, especially for parameters, e.g., time step or max CG itera-
tion, without any clear physical meaning. Understanding the effect
of the combination of such parameters is probably beyond human
capacity. This makes adjusting such parameters to achieve the de-
sired simulation output remain very inefficient [Sigal et al. 2015].
Furthermore, due to the concern of aesthetics, a single valid set of
the parameters may not exist. For example, one set of parameters
can achieve the anticipated garment shapes for the first 10 frames
while another set is preferred for the next 20 frames, etc. Therefore
it still requires significant manual efforts of experienced artists to
compose one desired garment animation.
A common workflow in the modern CG industry for garment

animation composition/editing is the keyframe approach. For each
keyframe, the artist adjusts the garment shapes commonly with skin-
ning techniques such as Linear Blend Skinning (LBS) [Kavan and
Žára 2005] and Dual Quaternion Skinning (DQS) [Kavan et al. 2007].
The input garment shapes in the keyframes are then propagated to
other frames via interpolation. However, as the garment geometry
is closely correlated to body motion, material properties, and en-
vironment, the garment shape space is exceedingly nonlinear and
complex. In order to achieve physically plausible garment shapes
consistent across motion, it requires very dense sample points for
interpolation within such a space. Consequently, the keyframes
must be densely distributed in the sequence (often as high as 20%
of the frames), and hence it remains extremely labor-intensive.
In this paper, we seek a semi-automatic framework for garment

animation composition. Such a framework requires addressing the
following challenges. First, the generation of garment animation
should be as automatic as physical simulation. Second, specified aes-
thetics preferences for selected keyframes should be respected and
can be naturally interpolated across the keyframes without dense

user input. Third, it should support nearly real-time interaction with
the user to provide instant feedback.
To tackle these challenges, we introduce a deep-learning-based

approach for semi-automatic authoring of garment animation. For a
given character and garment template (e.g., skirt), we learn a model
that can infer a latent representation of intrinsic parameters (i.e.,
simulator parameters, garment material parameters, and environ-
ment condition parameters) from an example keyframe. We call
these parameters the intrinsic parameters, as they are independent
of the character motions. To account for the automatic generation of
garment animation, the learned model can further apply the learned
latent representation to newmotions to automatically produce phys-
ically plausible garment shapes consistent with the given motion,
just as the physical simulator does (Fig 1(b)). Since the latent rep-
resentation is independent of the body motion, the latent space is
significantly simplified compared with the original 3D shape space.
This allows simple linear interpolation from sparse sample points.
Subsequently, as the artist edits more keyframes, to account for
the natural interpolation across keyframes, the model first infers
the latent representation for those sparse keyframes, and a linear
interpolation is performed to compute the intermediate status. Then
the intermediate garments can be recovered by applying those in-
terpolated latent representations on intermediate motions (Fig 1(c)).
Finally, as our approach is based on deep neural networks with a
low computational cost at run-time, the artist can edit the animation
at an interactive rate.

We propose a motion-invariant autoencoder neural network for
our task. Given a keyframe, the encoder learns to map its garment
shape descriptor into a latent space under the condition of corre-
sponding body motion. The latent vector can be interpreted as a la-
tent representation of the intrinsic parameters, i.e., all the garments
generated with the same intrinsic parameters should be mapped to
the same location in latent space by factoring out the body motion.
The decoder learns to reconstruct the garment geometry from a
latent vector also under the condition of a particular motion, i.e., it
is a differentiable simulator for the automatic animation generation.
Motion information is incorporated into the autoencoder via a mo-
tion descriptor learned from a motion encoder. Following the idea
of Phase-Functioned Neural Network [Holden et al. 2017], the mo-
tion descriptor represents a set of coefficients which linearly blend
the multiple sub-networks within an autoencoder layer. Thus, the
network weights are updated dynamically according to the motion.
The encoder, decoder, and the motion descriptor are jointly trained.

We qualitatively and quantitatively evaluated our method for
different garment types (skirt, sailor collar, and long skirt) and char-
acter motion sequences. Experimental results show that our model
can predict accurate latent representation from the keyframes and
yield satisfactory garment shapes on other frames with different
motions. The quality of generated garments is comparable with
that from a physical-based simulation. Moreover, our method en-
ables several important applications which might be challenging for
physical simulation or keyframing, such as automatically adjusting
garment animation under modifications of input body animation
(Fig 1(d)) and simplifying creation of loop-animations. We have also
integrated our model into the standard CG software (Maya) and
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tested it in a garment production pipeline (Fig 14), significantly
reducing the time and labor required.
In summary, our main contributions include:
• a novel semi-automatic pipeline for authoring garment anima-

tion;
• learning a motion-factorized latent space that encodes intrinsic

information of the garment shape; and
• learning a differentiable garment simulator to automatically re-

construct garment shapes from an intrinsic garment representation
and target body motion.

2 RELATED WORK
Garment Simulation. There has been a tremendous amount of

literature on garment simulation. Many physics-based simulation
methods focus on improving the simulation efficiency while retain-
ing the accuracy, for example, with implicit Euler integration [Baraff
and Witkin 1998], low-dimensional linear subspaces [Hahn et al.
2014], multigrid [Tamstorf et al. 2015], and iterative optimization [Liu
et al. 2013; Wang and Yang 2016]. In order to capture dynamic de-
tails, adaptive remeshing techniques are applied during physical
simulation [Narain et al. 2012; Weidner et al. 2018]. Various collision
handling methods are also proposed to resolve collisions [Golden-
thal et al. 2007; Tang et al. 2018]. While physics-based simulation is
able to produce realistic garment animation, it is still very challeng-
ing to tune the parameters to achieve the desired visual effects for
the artist. Our goal is to revise the garment animation to meet the
visual requirements by only editing very sparse key frames, while
still keeping the sequence physically plausible.
Data-driven methods are also commonly used in garment simu-

lation. For example, much of recent work learns from offline sim-
ulations to achieve real time performance [de Aguiar et al. 2010;
Kavan et al. 2011; Kim et al. 2013; Wang et al. 2010; Xu et al. 2014].
Other works focus on the transfer of simulated garments to different
body shapes and poses. Guan et al. [2012] learn a garment model
from simulated garments on many body shapes and poses, which
can then be applied to new bodies and poses without simulation;
Santesteban et al. [2019] learn a garment deformation model with
deep neural networks that enables virtual try-on by different bodies
and poses; while, Fulton et al. [2019] propose a reduced model simu-
lation framework for deformable solid dynamics using autoencoder
neural networks. Our aim is different. As in animation authoring,
we not only care about the garment shape for each single frame but
also the dynamic and consistency along a motion sequence.

Garment Capture. As an alternative to simulation, garment cap-
ture methods aim to faithfully reconstruct the garment animation
from captured data. Early work utilizes color-coded patterns printed
on garments to support video-based 3D capture [White et al. 2007].
Bradley et al. [2008] present a multi-view markerless motion cap-
ture system for garments. Popa et al. [2009] extend the multi-view
system by adding folds into the captured garment model. The Cloth-
Cap [Pons-Moll et al. 2017] system estimates the garments and
theirs motion from 4D scans assuming weak priors about where a
specific type of garment is expected to be with respect to the body.
Yang et al. [2018] further account for different cloth materials during
reconstruction. A recent work [Lahner et al. 2018] also captures

and reconstructs garments in motion from 4D scans with a condi-
tional adversarial neural network to add wrinkles to low resolution
normal maps. All these methods perform a faithful reconstruction
of the garment animation with the folds and wrinkles. However,
it is still challenging to edit such captured garment sequence to
generate new animations due to the loss of garment properties and
environment information. In contrast, our method infers the gar-
ment intrinsic parameters from the garment shape and body motion,
which can subsequently be edited and re-purposed to new motions
to synthesize novel garment sequences.

Motion Control via Neural Networks. Our network design is largely
inspired by the work of motion control via neural networks. Holden
et al. [2016] propose a CNN framework to map user instructions to
the full body motion to synthesize and edit character motion, but
it is an offline framework which is not suitable for our real-time
requirements. Subsequently, Holden et al. [2017] introduce a real-
time motion control framework with the Phase-Functioned Neural
Network (PFNN), whose weights can be dynamically changed as
a function of the phase. They demonstrate PFNN yields superior
performance over the standard networks and Recurrent Neural
Networks (RNN) [Fragkiadaki et al. 2015] which use the phase as an
additional input. Recently, Zhang et al. [2018] extend this idea and
propose mode-adaptive neural networks (MANN) for quadruped
motion control and Lee et al. [2018] extend the RNN based approach
to multi-objective character control. Inspired by PFNN, we aim to
control the garment shapes with the body motion. Instead of using
a phase function, we utilize a motion encoder to learn a motion
descriptor from the body movement as the coefficients to linearly
blend the sub-networks in each layer to update the networkweights.

3 APPROACH

3.1 Overview
Our method takes as input a single keyframe with a garment shape
and its corresponding character motion. Our goal is to infer the in-
trinsic properties that are independent of the character body motion.
The learned intrinsic vector can be further edited (e.g., by linear
interpolation, etc.) and applied to a new motion to synthesize a
perceptually-consistent garment shape in a differentiable fashion.

We adopt a motion-invariant autoencoder neural network for this
task (Section 3.4). The encoder takes as input the garment shape
descriptor (Section 3.3) and character motion and maps them into a
latent space representing the intrinsic parameters. We use synthetic
data from a physically based simulator to train the autoencoder.
We densely sample the parameters for the simulation. Thus the
generated dataset may cover the range of all possible manual edits.
In order to make sure the latent space is invariant to the character
motion, as shown in Fig 2, all frames generated by the same intrinsic
parameters (i.e., simulator parameters, environment parameters,
and garment material parameters) should be mapped to a single
point in the latent space during training. The decoder acts as a
differentiable simulator, which reconstructs a garment shape from a
latent vector and targetmotion. To efficiently incorporate themotion
information into the network, inspired by the Phase-Functioned
Neural Network [Holden et al. 2017], we use a learned motion
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Latent Space

Fig. 2. We train a motion invariant encoding that maps the garment shapes
with the same intrinsic parameters to the same location in the latent space,
while factorizing the motion of the underlying character, and decodes a
location in the latent space to various garment shapes using the provided
character’s motions. In the latent space, dots with the same color represent
instances generated by the same intrinsic parameters.

descriptor as the coefficients to linearly blend the multiple sub-
networks within each network layer to change the network behavior
according to the motion. The encoder, decoder, and the motion
descriptor are jointly trained to factor out the intrinsic property and
motion-related information.

Our paradigm of motion-invariant autoencoder provides two ad-
vantages. First, after extracting the latent representation of intrinsic
parameters from the raw frames, we obtain a much simpler space
compared with the original 3D shape space which supports mean-
ingful linear interpolation. Second, the motion-invariant latent rep-
resentation can be coupled with a different motion to produce novel
garment shape from the decoder. We consolidate our findings with
thorough experiments (Section 4). Before describing the technical
components in detail, we next introduce the specific representation
choices used in this work.

3.2 Data Representation
Given a fixed character body shape, we
assume the synthetic garment shape at a
specific frame is determined by the body
motion and intrinsic parameters, i.e.,
simulator parameters (e.g., time scale,
max solving iterations, etc.), environ-
ment parameters (e.g., gravity, air drag,
etc.), and garment material (e.g., bend,
friction, etc.).

Motion. We describe the body motion
as the pose aggregation of the current frame and pastW frames.

The pose is represented by the 3D positions of body joints, so we
have a K × 3 pose matrix P for a skeleton with K joints. The motion
signature is defined as the pose matrix for the current and pastW
framesM(W +1)×K×3 to describe the status of a specific moment. All
the poses are represented in the character space of the current frame.
This definition implies that the dynamics of the garment are only
related to the current and pastW frames.

Garment. We assume the garment to be dressed on the character
is deformed from a template mesh (Vtmp , Ftmp ) where Vtmp is a
N × 3 matrix that stores the 3D position of the vertices while Ftmp
stores the faces of the triangular mesh. At a framewithmotion status
M , the garment shape is represented by VM , since the topology of
the garment mesh remains unchanged from Ftmp . Garments are
also represented in the character space of the current frame.

Intrinsic parameters. We treat everything independent of the body
motionM as intrinsic parameters. During data generation, explicit
intrinsic parameters θ includes simulator parameters, environment
parameters, and garment material parameters. Explicit intrinsic
parameters sometimes are not continuous nor analytically differen-
tiable (e.g., the number of solving iterations). Our goal is to learn a
motion invariant representation as a latent vector z in our motion
invariant autoencoder.

Dataset. To train our network, we need a dataset that captures
the dynamics of the garment under different parameters driven by
different motions. With a given character and a given garment tem-
plate, we run simulations with randomly sampled parameters θ . We
organize the dataset as a collection of {V ,M,θ } including garment
shape V , the motion signatureM , and the simulation parameters θ .
The intrinsic vector z can be interpreted as a latent representation
of θ learned by our network.

3.3 Shape Feature Descriptor
Without loss of generality, our system takes 3D triangular mesh as
the input representation of garment shape. Observing the space of
valid 3D garment shape is a very small subset of the full vertices
space R |Vtmp | , we train an autoencoder to extract low dimensional
shape feature descriptors from the garment meshes with our syn-
thetic data. It not only reduces the dimension of the input data, but
more importantly ensures that our core network architecture re-
mains unchanged across garments of different types or resolutions.

mesh 𝑉 shape 
descriptor 𝑆

𝑁𝐸 𝑁𝐷

mesh 𝑉
As shown in the in-

set, we use multilayer
perceptrons (MLP) to en-
code (NE (·)) and decode
(ND (·)) the input shape
V ∈ RN×3 into/from
a low dimensional shape
descriptor S ∈ RNS . We train this network via the combination of
two types of loss, i.e., a L2 loss between the 3D vertex positions of
the input shape and the shape after encoding and decoding, and a
L2 loss between the mesh Laplacian [Taubin 1995] on the vertices
of those two to preserve surface details. Thus, the combined loss
function is defined as:

∥V − ND (NE (V ))∥2 + ω · ∥∆(V ) − ∆(ND (NE (V )))∥2,
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Fig. 3. A visual diagram of our motion invariant encoding network as dis-
cussed in Section 3.4. We use a learned motion descriptor as the coefficients
to linearly blend the multiple sub-networks within each network layer to
dynamically change the network behavior according to the motion.

where ∆(·) is the Laplacian operator. The shape descriptor S hence
is defined as S = NE (V ). We train our shape descriptor using only
the garment shapes from our dataset. Once the training converges,
we fix the weights of NE and ND for the rest of the pipeline.

3.4 Motion Invariant Encoding
Given the learned shape descriptor S , we now use the motion signa-
tureM to drive a neural network to extract the motion-independent
representation z. As shown in Fig. 3, our autoencoder architecture
has an encoder FE (S | M) = z mapping the input shape descriptor
into the latent space z, and a decoder FD (z | M) = S reconstructs
the shape descriptor from z. The motion signatureM is provided as
a condition for the mapping functions, as it provides the dynamic
cues for the garment shape for a specific frame. Different intrinsic
parameters with different motions may result in similar garment ge-
ometry (e.g., running slowly with high air-drag force may produce
a similar garment shape as running fast with low air-drag force), so
it is crucial to incorporate the motion into the network to resolve
the ambiguity.

Inspired by the Phase-Functioned Neural Network [Holden et al.
2017] whose weights can be dynamically changed as a function
of phase, we involve the motion into the network by dynamically
updating the network weights as a function of motion signature.
Intuitively, our network has multiple sub-networks within each
layer, and each sub-network is associated with a blending coefficient.
The final network weights are computed by linearly blending the
sub-network weights. We employ the motion signature to control
the coefficients so as to drive the network weights. Because the
coefficients should be non-negative and normalized to 1 but the
dimension of motion signature is very large (e.g. ≫ 103 for K = 24
joints andW = 100 past frames), we introduce the motion descriptor
MD ∈ RNM as a normalized and compact latent representation for
the motion signature M ∈ R(W +1)×K×3, where NM is the number
of sub-networks for each layer.

As shown in Fig. 3, a MLP motion encoderME (·) is applied over
the motion signature M to derive the motion descriptor MD , i.e.,

MD = ME (M). We adopt a Softplus activation [Dugas et al. 2001]
after the last layer inME to make it non-negative.

Now the building block of FE (·) and FD (·) can be annotated as

U (x | γ1,γ2,NM ,MD ,Ψ(·)) = Ψ

(NM∑
i=1

Mi
D · L̃iγ1,γ2 (x)

)
,

where γ1/γ2 are the input/output dimension, L̃γ1,γ2 (·) is a standard
linear transformation from Rγ1 to Rγ2 and Ψ(·) is an activation
function. Our network consists of such a U-block sequence. The
input/output dimension γ1/γ2 and the activation function Ψ of each
block may vary, but the size of motion descriptorMD , NM , remains
the same for each U-block.
The motion-invariant autoencoder FE/D (·) and the motion en-

coderME (·) are jointly trained. During the training, we pack a group
of {Vi ,Mi } generated with the same θ in a single batch, i.e., the batch
data correspond to the same intrinsic parameter. The training loss
is defined as

E = Var(z) + λ · ∥Si − S∗i ∥,

where Si = NE (Vi ) is the input shape descriptor, S∗i = FD (zi | Mi ) is
the recovered shape descriptor, zi = FE (Si | Mi ) is the latent vector,
and Var is the variance of zi in the batch. The first term aims to
minimize the variance in the latent space within the same batch, as
the input {Vi ,Mi } generated with the same θ are supposed to be
mapped to the same location in the latent space. The second term
acts as a regularizer to penalize the difference between the input
shape descriptor and the recovered one, so as to ensure the latent
space will not degenerate to zero or an arbitrary constant. A weight
coefficient λ = 10−1 is applied to balance the scale of the two terms.

3.5 Refinement
Given a latent vector z and motion descriptor M , our system pre-
dicts a plausible clothing mesh V via ND (FD (z | M)) consistent
with the motion. As our network is trained with synthetic data from
a physically-based simulator, the simulation inevitably introduces
‘noise’ to the dataset. This is because, in the simulation, the momen-
tum of some movements may last longer thanW frames and the
simulator itself may suffer from numerical instability. This leads to
the fact that V may not be a perfect function ofM and θ . Therefore,
it is not guaranteed that the predicted garment shape is always
collision-free (as shown in Fig. 4), especially when the garment is
tight. Consequently, we apply an efficient refinement step to drag
the garment outside the body while preserving its local shape fea-
ture. Specifically, given a body shape B and the inferred garment
mesh V , we detect all the garment vertices inside B as Ṽ . For each

Initial shape After 1 iterationAfter 2 iterationsAfter 3 iterations

Fig. 4. From right to left, we progressively solve the interpenetration be-
tween the garment and the body.
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vertex ṽi ∈ Ṽ , we find its closest point over the body surface with
position vBi and normal nBi . Then we deform the garment mesh to
update the garment vertices V ∗ by minimizing the the following
energy:

EB = ∥∆(V ∗) − ∆(V )∥ + σ
∑
i ∈Ṽ

∥ṽ∗i − (vBi + ϵn
B
i )∥.

The first term penalizes the Laplacian difference between the de-
formed mesh and the inferred mesh, and the second term forces
the garment vertices inside body to move outwards with ϵ being a
small value ensuring the garment vertices lie sufficiently outside
the body. In rare cases of heavy interpenetration, the closest point
vBi on body may be unwanted, i.e., on the opposite side of the body.
To solve this issue, one can start from a vertex vi outside the body
and check the interpenetration of the other vertices in an ascending
order of geodesic distances to vi . Then the optimization can be
performed progressively for the newly found inside vertices. This
usually requires less than 5 iterations to converge to a collision-free
garment shape.

3.6 Implementation
We now provide details about the data generation process and the
network architecture.

Data Generation. We generate a dataset supporting three different
types of garments, i.e., skirt, sailor collar, and long skirt. Garments of
the same type are deformed from the same template, which means
the size is fixed for each type of garment among the dataset. The
garment mesh has 5787 vertices for the skirt, 1638 vertices for the
sailor collar, and 12540 vertices for the long skirt. We dress the
character in a shrink-and-inflate fashion as [Wang et al. 2018]. We
apply the MikuMikuDance motion [Wikipedia contributors 2019]
to drive the animation of our character. We select 6 clips from
MikuMikuDance which gives about 30K motion frames in total.

We use Maya Qualoth [Autodesk Inc. 2015] cloth simulation plug-
in to generate the deformed garment shape.We sample three types of
parameters for each round of simulation, i.e., simulator parameters,
environment parameters, and garment material parameters. Simula-
tor parameters include compression, proximity criterion, proximity
force, sharp feature force, frame samples, time scale, max CG iter-
ation and CG accuracy. Environment parameters include air drag
and gravity. Garment material parameters include density, stretch,
stretch damp, shear, bend, bend damp, bend yield and friction. Before
generating the dataset, we find the proper range of each parameter
by setting other parameters to a base value and varying the target
parameter until the simulator fails to produce reasonable results or
crashes. We randomly sample values within the calculated range for
each parameter. We sampled 200 combinations of the parameters,
and the parameters are fixed during each round of simulation. This
provides us about 200 × 30K = 6M pairs of {V ,M,θ }. It takes 24
hours for a CPU cluster with 6 Intel(R) Xeon(R) E5-2643 cores to
generate this dataset1.

1Code and sample data can be found at http://geometry.cs.ucl.ac.uk/projects/2019/
garment_authoring/.

Network Architecture. The networks for learning the shape de-
scriptor are composed of linear blocks which are linear layers fol-
lowed by Parametric Rectifying Linear Unit (PRELU) activations [He
et al. 2015] and batch normalization. Note that to enhance the com-
pactness of descriptor, we adopt RELU−6 activation [Krizhevsky
and Hinton 2010] after the last layer of the encoder network. Specif-
ically, the encoder, NE , takes as input a N × 3-dimensional vector
reshaped from the vertices of the garment shape (e.g., N = 5787
for skirt) and maps it to a NS = 50 dimensional descriptor using 5
linear blocks (the output dimension size is 5000 in the first block
and gradually decreased to 2000, 600, 200, and 50 in the remaining 4
blocks). The architecture of decoder, ND , is symmetric with NE .

Themotion encoder network is also composed of the linear blocks.
To ensure the motion descriptor to be non-negative, we adopt Soft-
plus activation [Dugas et al. 2001] after the last layer of the motion
encoder. After the Softplus activation, we linearly normalize the
descriptor to unit length. Specifically, the motion encoder,ME , takes
as input a (W +1)×K ×3-dimensional vector reshaped from the mo-
tion matrixM(W +1)×K×3. As mentioned before, we haveW = 100,
K = 24 across our dataset. The motion encoder then maps it to the
NM = 30 dimensional motion descriptor space with 4 linear blocks
(the output dimension size is 1200 in the first block and gradually
decreased to 600, 120, and 30 in the remaining 3 blocks).

The motion invariant autoencoder consists of two networks, i.e.,
an encoder FE and a decoder FD . Both FE and FD are composed of
U-blocks as mentioned in section 3.4. Specifically, the encoder, FE ,
takes as input a NS = 50 dimensional shape descriptor vector and
maps it to the Kz = 100 dimensional latent space with 5 U-blocks
(the output dimension size is 100 for all the blocks). The network
architecture of the decoder, FD , is symmetric with NE .

We first train the shape feature descriptor for 600 epochs with a
learning rate of 10−3 and batch size of 64, and NE and ND are fixed
for the rest of the training. After that, we train the motion encoder
and the motion invariant encoding networks jointly for 600 epochs
with the same learning rate and a batch size of 32. We use stochastic
gradient descent for network back-propagation. We used PyTorch
for implementation and the proposed network takes about 10 hours
(for the shape descriptor) and 40 hours (for the rest) to train on each
dataset with one Nvidia Titan X GPU. At runtime, the forward pass
of the network takes, on an average, 24ms on the same GPU, and
the refinement step takes, on an average, 40ms on a 48-thread Intel
Xeon CPU, enabling an interactive authoring workflow for garment
animation.

4 EVALUATION
We evaluate our method for three aspects: (i) the capacity of the
shape feature descriptor; (ii) the capacity of the motion-invariant
autoencoder; (iii) the applications in real garment animation author-
ing task. We evaluate our method qualitatively and quantitatively
on different datasets. We split our synthetic dataset into training
(95%) and testing sets (5%) so that no intrinsic parameters and body
motions are shared across the splits.

(i) Shape Feature Descriptor Evaluation. We learn a low dimen-
sional compact feature space to compress the input 3D shape. We
utilize the combined loss with a Euclidean distance term and a
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Fig. 5. (Left) We test our system on a dataset including three types of
garments (skirt, sailor collar, and long skirt). The garment shapes in the
dataset are generated by simulating with different simulator parameters,
environment parameters, and material parameters. (Right) The variance in
the intrinsic parameter space creates a variance in the garment shape space
even for the same body motion sequence.
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Fig. 6. For a given garment shape (top row), we show the reconstruction re-
sults using our learned shape feature descriptor with/without the Laplacian
term (2nd and 3rd row) and using principal component analysis (4th row). A
difference map is rendered side by side. The warmer color indicates a larger
error. Our learned shape feature descriptor (2nd row) provides better visual
quality for shape reconstruction.

Laplacian term to train our neural descriptor (Sec 3.3). As shown
in the second row of Figure 6, our network successfully maps a
17361−dimensional 3D shape space to a 50−dimensional descriptor
space and reconstructs the 3D shape close to the input from the low
dimensional descriptor. The Laplacian term plays a vital role in the
recovery of fine and sharp details (see the third row of Figure 6). As
an alternative approach, the principal component analysis (PCA)
performs linear compression by extracting bases and coefficients.
However, we find that reconstruction with PCA bases and coef-
ficients with the same dimension achieves lower reconstruction
accuracy compared with our approach, as shown in the bottom row
of Figure 6.
We also evaluate the effects of the dimension of shape descrip-

tor by training the shape feature descriptor with different target
dimensions (20/40/50/100/200). Quantitatively, as shown in Fig-
ure 7, reducing the dimension to 50 is a reasonable choice as further
increasing the size has little improvement in the accuracy. We can
also see that our method achieves much less error compared to the
PCA reconstruction with the same dimension for coefficients.

Besides the reconstruction accuracy, we expect the learned de-
scriptor space is ‘convex’ inRNS , i.e., the decoder network should be
able to produce smooth plausible transitions between two sampled
garment shapes. In Figure 8, we show two interpolation examples. In
each case, the two given shapes (leftmost and the rightmost one) are
first passed through the encoder NE to calculate their descriptors.
We then perform linear interpolation in the descriptor space and
use the decoder, ND , to map the interpolated descriptors back to
the 3D shape space. We see that our decoder successfully produces
smooth outputs in-between.
We also demonstrate the generalization ability of our shape de-

scriptor network. As shown in Figure 9, our learned descriptor is
robust to a 3D shape that is very different to our training data, or
even not physically realistic. Our network successfully maps the
unseen input 3D shape to descriptor space and reconstructs a similar
but physically realistic garment.

(ii) Motion-invariant Encoding Evaluation. We train a motion-
invariant autoencoder to factor out the intrinsic information from
an input garment shape and its corresponding motion. Therefore we
evaluate the network performance from two aspects: first, accuracy
of factorization, i.e., whether the decoder can faithfully recover the
input shape from the latent vector when given the corresponding
motion data; and second, intrinsic-ness, i.e., whether the learned
latent representation can be used to faithfully reconstruct the target
shapes when given new motion data. As shown in Figure 10, for a
given garment shapeV with a known motionM , our reconstruction
ND (FD (FE (NE (V ) | M) | M)) is able to produce a garment shape
closely matching the input. When applied to new motion data, i.e.,
ND (FD (FE (NE (V ) | M) | M∗)), the reconstructed garment shape is
also almost the same as the groundtruth.

Next, we experiment with alternatives in the network architecture
and training strategy. To demonstrate the efficacy of our motion-
driven network design, we compare our result with the straightfor-
ward option, i.e., concatenating the motion signature with the shape
descriptor as input and adopting a standard autoencoder [Umetani
2017] to learn the motion-invariant encoding. To evaluate our joint

50 100 150 200 250

100 200 300 400 500

epoch

dim. of PCA

dim = 25
dim = 40
dim = 50
dim = 100
dim = 200

cm

cm

Fig. 7. Our learned shape feature descriptor quantitatively provides better
accuracy compared with principal component analysis (PCA) using the
same dimension for coefficients.
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Fig. 8. We perform linear interpolation in the learned shape feature descrip-
tor domain between two input garment shapes (leftmost and rightmost).
Each row shows an example. The two input garment shapes are simulated
with different parameters. The results indicate that our learned descriptor
space is a convex space for reasonable garment shapes.

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑉𝑁𝑁

Fig. 9. If a garment shape Vin is not covered by our dataset (i.e., a garment
shape that is not physical realistic), our shape descriptor network maps it to
the descriptor space and outputs a physically realistic Vout to approximate
the input shape. We also show the nearest shape VNN retrieved from the
dataset.

training strategy, we test another standard strategy wherein the
encoder and decoder are trained separately while using the distance
in intrinsic parameter space to regularize the training. Specifically,
since we have intrinsic parameters θ for each data entry, we can
train the encoder with an embedding loss so that the latent vector
z preserves the Euclidean distance in the intrinsic parameter (θ )
space. Then we fix the encoder and separately train the decoder
to reconstruct the shape descriptor from the latent vector z. As
illustrated in Figure 11 (left), both of the alternatives converge to
lower accuracy than our method.

An important parameter for our network is the number of frames
W used for motion signature. We evaluate the effects ofW by train-
ing with differentW settings (1/20/40/80/100). As shown Figure 11
(right), a largerW tends to introduce higher accuracy. It is natural,
as a larger W indicates more identical motion signature for the
current status. A smallW may introduce noise to the network, as
the garment shape may vary a lot even if the recent body motion
is similar. Such noise reduces the accuracy of the network training.
We chooseW = 100 for our network as a trade-off between the
accuracy and computational efficiency.

Finally, the meshing quality of the reconstructed garment shape
is another core concern when evaluating the performance of our
system. In Figure 12, we qualitatively assess the meshing of the
reconstructed garment shape by visualizing it with a colored dot
texture. We apply UV parameterization on the template mesh, and
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Fig. 10. Here we qualitatively show the reconstruction accuracy of our mo-
tion invariant encoding. For a given garment shape V with known motion
status M , we acquire its latent representation z = FE (NE (V ) | M ). We
present the reconstruction results V ′ = ND (FE (z | M )). We also decode z
with other motion statuesM1/M2/M3, so we haveV ′

1 /V
′
2 /V

′
3 . Their ground-

turth reference from simulation is marked as V1/V2/V3 in the figure. We
show the difference maps in the 3rd row with the warmer color indicating
a larger error. We show that our motion invariant encoding successfully
factors out the intrinsic information from a given garment shape and its
corresponding motion status. The learned intrinsic representation can then
be used to recover the garment shape for any motion status.

Embedding
Concatenate
Ours

Loss

W = 1
W = 20
W = 40
W = 80
W = 100

Loss

Fig. 11. (Left) comparisons with a different network architecture and train-
ing strategy. (Right) validation errors of using different frame numbers to
encode the motion descriptor. Using a small frame number tends to reduce
the accuracy in shape prediction.

the UV coordinates are copied to the reconstructed meshes since the
topology of the new mesh remains unchanged. We can see that our
system is able to produce consistent textures over different latent
vectors and body motions.

(iii) Application: Garment animation authoring. With our neural
network based motion-invariant encoding system, we enable three
applications in the authoring of garment animation.
The first application is semi-automatic garment animation com-

position. The standard garment animation composition pipeline
in modern CG industry requires a huge amount of user efforts. In
the traditional pipeline, starting from the first frame, the user ed-
its the template garment mesh to match the character pose. Then
the user moves to the next keyframe where the body pose change
exceeds a threshold value. After the garment on that keyframe is
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Fig. 12. Our method produces consistent textures across different motion
status. In this example, we parameterize the template mesh of the skirt
(a truncated cone) and copy the UV coordinates to the vertices of the
predicted shapes. We achieve a consistent texture for the composed garment
animation.

modified, the garment shapes for intermediate frames are generated
via linear interpolation in the garment shape space. The user then
checks the intermediate frames to see if any adjustment is needed.
If so, a new keyframe will be inserted between the two keyframes.
Otherwise, the user may continue to the next keyframe. On average,
one keyframe is essential for every five frames following such com-
position workflow, which indicates the ratio of required keyframes
is 20%.

In contrast, our model enables a semi-automatic pipeline for the
animation composition, largely reducing the user workload. To test
our system in a real-world environment, we integrate our model into
Autodesk Maya and build a user interface (UI) to allow users to test
our system (as shown in Figure 14). Our UI allows the user to insert
a keyframe, and modify its garment by selecting a desired design
from the provided candidates (see the left window in Figure 14). The
candidates are generated by random sampling from the latent space.
Then our system automatically generates the garment animation
for the whole sequence. The user can visually assess the animation
result (see the right window in Figure 14). If not satisfied, the user
is allowed to insert more keyframes, or delete frames to achieve
his/her desired effects. Please refer to the supplementary video to
see each of these editing options.

In Figure 13, we show that ourmethod successfully performs phys-
ically plausible interpolation across 96 frames with only 2 keyframes,
while linear interpolation in 3D space or shape descriptor space
causes significant artifacts. Thanks to our motion-invariant encod-
ing that learns a motion independent intrinsic representation from
keyframes and deploys it to infer intermediate garment shapes, our
system significantly reduces the ratio of required keyframes to 1−2%
in all of our testing cases. Figure 15 illustrates another composition
example with sailor collar and long skirt.
The second application is simplifying creation of garment loop-

animations. Since our system generates garment shapes only regard-
ing to the intrinsic latent vector and the current and pastW = 100
motions, it indicates if the latent vector remains unchanged, the
same motion signature will always result in the same garment shape.

This assumption does not hold for a physics simulator, for exam-
ple, even the body movement in the first frame may still remain
momentum on a very late status. This fact brings a tricky problem
in garment loop animation generation. In the traditional workflow,
the user loops the body animation several times and runs garment
simulation on the looping body movements, hoping that after a
certain number of iterations, the garment animation may loop itself
as well. However, it is nearly impossible to obtain perfect results,
because, for different iterations, the motion accumulated from the
staring frame is different. The instability of numerical computation
will further boost this difference, which leads the animation still
diverging even after a huge number of iterations. The manual effort
is inevitably needed to modify the garment animation to close the
gap at last. In Figure 16, we show that our system naturally allows
consistent loop animation composition once a looping body anima-
tion is given. Please refer to the supplementary video which shows
the looping animation.
The third application is automatically adjusting garment anima-

tion under modifications of input body animation. The need for
modifying body motion may happen during garment animation
composition from time to time, which arises from the pursuing of
character stylization or aesthetic effect. In a traditional workflow,
once the body motion is modified, the garment shapes of all the
frames related to the modification need to be adjusted manually.
In contrast, in our system, since the garment shape is generated
from motion independent intrinsic representation, and automati-
cally driven by the body motion, there is no manual effort required
to adjust the garment animation if the character body motion is
changed. As shown in Figure 17, the user can try with different body
motion designs without any extra efforts (see also supplementary
video).

User experience and feedback. We have invited several CG design-
ers from industry to test our system in different garment authoring
tasks. We received mostly positive feedback as all the designers
felt that our semi-automatic workflow dramatically improves the
efficiency and allows them to really focus on the design, instead of
imagining the 3D shapes from frame to frame or painfully experi-
menting with a large number of parameters in a black-box simulator.
Here is the quote from a product manager:

This system armed a single designer to beat a tradi-
tional project team. Achieving consistent quality for
a big project, i.e., a CG movie or a video game with
more than 1000 animation clips, is very challenging.
It is even more difficult to control the quality when
the team size is over 50. By using the new workflow,
thanks to the high efficiency, we may have a much
smaller team and much shorter production cycle to get
the job done.

5 CONCLUSION AND DISCUSSION
We presented a data-driven learning framework for obtaining a
motion independent latent space that factors out intrinsic design
parameters and character body motion in the context of garment
animation composition. The learned motion-invariant network en-
ables a novel workflow for garment animation composition that
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𝑎) 𝑏)

𝑐) 𝑑)

𝑒) 𝑓)

Fig. 13. We compare our approach with other baseline methods. For a given motion sequence (a), our system produces a garment animation sequence (b) from
two keyframes (marked by yellow). Linear interpolation between the two keyframes in the 3D shape domain (c), or our learned shape feature descriptor
domain (e) cannot produce reasonable results. Adding more keyframes may not lead the results (d) and (f) closer to the desired output (b). The sequence goes
from right to left in this figure and we draw our results for every 8 frames.

allows users to improve the working efficiency by reducing the
keyframe ratio from 20% to < 2%. The new system also seamlessly
allows updating character body motion and creating loop anima-
tions. Finally, we evaluated our method, both quantitatively and
qualitatively, in different usage scenarios and showed compelling
results.

5.1 Limitation and Future Work
The main limitation of the proposed approach is that the learned
network is character and garment template dependent. Although

Fig. 14. Our user interface allows the user to edit the garment animation
or the character motion and visualizes the updated garment animation
at an interactive rate. Please refer to the supplementary video to see the
interactive editing workflow.

our system can work with a variety of body movements, for a dif-
ferent character with different body shape or wearing a different
garment, we need to re-generate our dataset with the new assets
and re-train our network. Luckily, in many CG industry pipelines,
the character and its corresponding asset, i.e., garment, are usually
fixed at the modeling stage and remains unchanged subsequently.
However, it is still relevant to investigate the problem of generat-
ing different types of garment for different characters within one
network. Advances in few-shot learning [Mason et al. 2018] may
be a possible solution to effectively adapt a learned network to a
new character and/or garment. Another limitation comes from the
assumption that only the current frame and the pastW frames may
have an impact on the garment dynamic. This makes the network
inevitably lose some details and may result in interpenetration with
the underlying body. An adversarial generative network may be
helpful to solve this problem in the future. As our training data is
generated using physically-based simulation, it avoids the heavy
manual work for capturing real data, but still requires a long time to
generate. Reducing the time for data generation is also an interesting
direction.
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𝑎)

𝑏)

Fig. 15. Our result with different garment types. With a character wearing a sailor collar and a long skirt, a) the system generates a garment animation from
one keyframe (marked in yellow); b) the user inserts another keyframe (with visually softer and heavier garment material, marked in yellow) and the system
performs interpolation between the two keyframes. The animation sequence in this figure is illustrated from right to left.
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Fig. 16. Our approach naturally enables the composition of loop animation
while simulation-based approach may not converge even after running for
many iterations.
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