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Abstract    We  present  an  animatable  3D  Gaussian
representation  for  synthesizing  high-fidelity  human  videos
under  novel  views  and  poses  in  real  time.  Given  multi-view
videos  of  a  human  subject,  we  learn  a  collection  of  3D
Gaussians  in  the  canonical  space  of  the  rest  pose.  Each
Gaussian  is  associated  with  a  few  basic  properties  (i.e.,
position,  opacity,  scale,  rotation,  spherical  harmonics
coefficients) representing the average human appearance across
all  video  frames,  as  well  as  a  latent  code  and  a  set  of  blend
weights  for  dynamic  appearance  correction  and  pose
transformation.  The  latent  code  is  fed  to  an  Multi-layer
Perceptron (MLP) with a target pose to correct Gaussians in the
canonical space to capture appearance changes under the target
pose.  The  corrected  Gaussians  are  then  transformed  to  the
target pose using linear blend skinning (LBS) with their  blend
weights.  High-fidelity  human  images  under  novel  views  and
poses can be rendered in real time through Gaussian splatting.
Compared  to  state-of-the-art  NeRF-based  methods,  our
animatable  Gaussian representation produces more compelling
results  with  well  captured  details,  and  achieves  superior
rendering performance.
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Gaussian splatting
 

1    Introduction
Synthesizing  photorealistic  human  animations  constitutes  a
critical  challenge  across  various  domains,  including
telepresence,  free-view  videos,  and  cinematography.
Conventional methods [1,2] apply 3D mesh reconstruction for
this task. The reconstructed meshes, however, may not capture
complex  geometry  details  well,  leading  to  noticeable
degradation in visual quality. Neural radiance field (NeRF) [3]
offers a new perspective to 3D representation, which encodes
the  color  and  geometry  information  of  a  3D  scene  with  an
Multi-layer  Perceptron  (MLP)  network,  and  performs
rendering via volumetric ray-marching. Recent work [4–6] has
successfully  applied  NeRF  to  dynamic  human  modeling  and
demonstrated promising results in free view synthesis.

Nonetheless, discernible artifacts persist in NeRF-generated

human  videos.  Notably,  these  techniques  often  manifest
blurred  results  and  cannot  capture  high-frequency  details
exhibited in input video frames (e.g., garment wrinkles) [4,7].
State-of-the-art  methods  [6]  propose  to  enhance  the  NeRF
representation with a learned UV texture generator to produce
intricate human details. However, the generated textures could
be  inconsistent  across  different  human  poses,  resulting  in
noticeable  jittering  artifacts  in  synthesized  videos  (see  the
supplementary  video).  NeRF-based  methods  also  have  high
computational  costs,  making  it  difficult  to  realize  real-time
synthesis of animated humans (with the exception of [6,8]).

In  this  paper,  we  propose  an  animatable  3D  Gaussian
representation  for  synthesizing  high-fidelity  human  videos
under  novel  views  and  poses  in  real  time.  Compared  with
NeRF-based  methods,  3D  Gaussian  splatting  (3DGS)  [9]
provides  a  competitive  solution  to  novel  view  synthesis  in
rendering  high-resolution  images  at  real-time  frame  rates.
However,  extending  3DGS  to  model  animatable  humans  is
non-trivial – the original method is designed for static scenes.
While recent concurrent work [10] has demonstrated dynamic
scene modeling using Gaussians, it is restricted to video replay
and not suitable for synthesizing dynamic humans under novel
views and poses.

Our  animatable  Gaussian  representation  leverages  multi-
view  human  videos  as  input,  and  learns  a  collection  of  3D
Gaussians  in  the  canonical  space  of  the  rest  pose.  Each
Gaussian  is  associated  with  a  few  basic  properties  (i.e.,
position,  opacity,  scale,  rotation,  spherical  harmonics
coefficients),  along  with  a  latent  code  and  a  set  of  blend
weights.  The  Gaussians  with  basic  properties  represent  the
average human appearance across all video frames. The latent
code  serves  as  a  pose-aware  residual  appearance  embedding.
Given a target pose, the latent code and the target pose are fed
to a tiny MLP to correct each Gaussian in the canonical space
to capture the appearance changes under the target  pose.  The
corrected  Gaussians  are  then  transformed  to  the  target  pose
using  linear  blend  skinning  (LBS)  [11]  with  their  blend
weights. In this way, high-fidelity human images under novel
views and poses can be rendered in real  time using Gaussian
splatting.

To  learn  the  animatable  Gaussian  representation,  we
elaborate several loss function terms including the image loss,
D-SSIM loss,  and perceptual  loss  that  are  commonly  used  in
prior  work,  as  well  as  a  blend  weight  loss  and  an  alpha  loss
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dedicated  for  our  representation.  The  blend  weight  loss  is
introduced to suppress the standard deviation of blend weights
within  each  Gaussian,  which  ensures  that  each  Gaussian  can
undergo  a  LBS  transformation  as  a  cohesive  unit  without
introducing  significant  errors.  The  LBS  transformation
establishes  a  continuous  deformation  field  in  3D  space  by
employing  a  linear  combination  of  bone  matrices  with
associated  blend  weights  at  any  3D  point.  However,  in  our
representation,  each  Gaussian  can  only  be  transformed  as  a
cohesive  unit,  using  the  transformation  at  its  center.
Consequently,  the  transformation  of  Gaussians  is  essentially
an approximation of the continuous LBS transformation. If the
blend  weights  within  a  Gaussian  vary  greatly,  the
approximation  will  result  in  substantial  errors,  manifesting
noticeable  artifacts  such  as  Gaussians  protruding  outside  the
human body. The alpha loss is defined as the deviation of the
rendered  opacity  image  from  the  binary  foreground  mask
image, which explicitly constrains Gaussians to stay within the
human region without the interference of the background, and
makes Gaussians better capture the movement of garments.

We  conduct  a  two-stage  approach  to  train  the  Gaussian
representation.  In  the  first  stage,  we  only  optimize  the  basic
Gaussian  properties  and  human joint  parameters  to  obtain  an
average human model as an initial configuration. In the second
stage,  we  switch  on  the  MLPs  to  empower  Gaussians  in
capturing pose-aware appearance changes and acquiring more
precise  blend  weights.  Such  a  two-stage  scheme  effectively
improve the robustness of the training procedure.

Based  on  the  animatable  Gaussian  representation,  we  can
synthesize  high-quality  free-view  human  videos  in  novel
poses.  Compared  to  previous  NeRF-based  methods,  our
method  can  better  capture  high-frequency  details,  which  are
consistent across different poses,  producing temporally stable
human  videos.  As  we  only  need  a  tiny  MLP  for  Gaussian
correction  at  runtime,  and  thanks  to  the  superior  rendering
performance of Gaussian splatting, animated human synthesis

can  be  performed  in  real  time,  significantly  faster  than  state-
of-the-art techniques (66 fps versus 18 fps in [6] in novel pose
synthesis).  We  conduct  extensive  experiments  on  three
established datasets:  ZJU Mocap,  H36M, and CMU Panoptic
datasets.  Both  qualitative  and  quantitative  results  show  the
superiority  of  our  method  over  existing  techniques  (see
Fig. 1). 

2    Related work
Free-view human video  synthesis. In  the  last  decade,  many
efforts  have  been  made  to  model  dynamic  humans.  Some
work attempts to build a statistical mesh template [1,12,13] to
model human bodies. To handle human appearance, traditional
methods scan human subjects to acquire textures and material
parameters  [2,14].  For  the  deformable  parts  such  as  loose
garments,  physical  simulation  [15],  blending  from  database
[16],  or  deformation  space  modeling  [17]  are  performed  to
improve fidelity. In recent years, lots of works leverage neural
representations to depict dynamic scenes or humans, including
voxels  [18],  point  clouds  [19],  neural  textures  [20,21],  and
NeRF  [4,5,22–25].  Animatable  NeRF  [4]  uses  the  skinned
multi-person  linear  model  (SMPL)  [1]  to  establish
correspondences  between  arbitrary  poses  and  the  rest  pose,
and model pose-dependent details by conditioning an MLP on
the appearance latent code of each frame. To model more local
details,  Zheng  et  al.  [26]  assemble  the  radiance  field  of
dynamic  humans  by  a  set  of  local  ones,  which  improves  the
visual  quality  of  garment  wrinkles.  However,  these  methods
based  on  neural  representation  suffer  from  slow  training  and
rendering.  Fourier  PlenOctrees  [27]  utilizes  Fourier
transformation to compact the dynamic octrees of the scene in
the  time  domain,  which  realizes  100  fps  rendering  but  does
not  support  novel  pose  generation.  InstantAvatar  [28]
incorporates  instant-NGP  [29]  in  avatar  learning  from
monocular  video  input,  and  achieves  15  fps  rendering
performance.  IntrinsicNGP  [25]  extends  intant-NGP  [29]  to

 

 
Fig. 1    Compared  with  state-of-the-art  techniques,  our  animatable  3D  Gaussian  representation  is  able  to  capture  high-frequency  details  and
achieve superior rendering performance
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dynamic  human  modeling  by  unwrapping  the  human  surface
to a smooth and convex UV space,  and constructing a UV-D
grid  for  querying  points.  As  NeRF-based  methods  tend  to
generate blurred results, UV Volume [6] proposes to render a
UV map by neural  volume rendering and uses  a  generator  to
obtain  textures  conditioned  on  the  pose.  UV  Volume  can
render  appearance  with  high-frequency  details  and  achieve
real-time  rendering,  but  its  texture  prediction  is  inconsistent
across  video  frames,  causing  jittering  artifacts  in  synthesized
videos.  Different  from  NeRF-based  techniques,  our  method
applies  the  SMPL  model  to  explicitly  transform  the  3D
Guassians  and  distributes  an  appearance  latent  code  to  each
Gaussian,  which  is  decoded  by  a  tiny  MLP  to  obtain  pose-
dependent  human  appearances.  Our  method  produces  high
quality videos and keeps real-time rendering performance.

Novel view synthesis for static scenes. Novel view synthesis
for  static  scenes  is  a  well-explored  problem,  which  aims  to
synthesize  new  images  from  arbitrary  views  of  a  scene.
Traditional  approaches  [30–32]  construct  light  fields  to
generate novel views from densely captured images. Recently,
Neural  Radiance  Field  (NeRF)  [3]  has  became  a  popular
technique for this task, by representing the scene with implicit
fields of view-dependent color and density using deep MLPs.
Although NeRF achieves high-quality novel views, its training
and  rendering  are  time-consuming.  Subsequent  work
[29,33,34]  attempts  different  strategies  to  accelerate  NeRF.
For example, instant-NGP [29] replaces the deep MLP with a
shallow  MLP,  using  multi-resolution  hash  encoding  as  its
input,  which  can  be  trained  in  a  few  minutes  and  render
images in real  time.  Recently,  3D Gaussian splatting (3DGS)
[9] has demonstrated the superiority of explicit representations
in  novel  view  synthesis  tasks.  3DGS  builds  a  differentiable
rasterizer to optimize the position, covariance and appearance
of  3D Gaussians  from image  loss.  Compared  to  NeRF-based
methods  which  rely  on  expensive  volumetric  ray  marching,
3DGS utilizes  the  traditional  rasterization  pipeline,  achieving
over 100 fps rendering. In addition, the explicit representation
provides  a  more  intuitive  way  for  animation  control,  which
motivates  us  to  apply  3D  Gaussians  for  modeling  dynamic
humans.

Concurrent works. Many concurrent works propose to model
dynamic  humans  using  3D  Gaussians.  Zielonka  et  al.  [35]
embed  3D  Gaussians  within  human  tetrahedral  cages  and
employ  cage  deformations  to  model  the  pose-dependent
variations.  Each  Gaussian  is  confined  within  a  cage,  and  the
total number of Gaussians remains fixed during optimization,
which limits its capability to capture high-frequency details. Li
et  al.  [36]  extract  the  color  of  each  Gaussian  from  the
Gaussian  map  predicted  by  the  StyleUNet  [37],  which  limits
their  rendering  speed.  Along  with  [38,39],these  works  fail  to
achieve  fast  training  with  relatively  complex  pipelines.
Kocabas  et  al.  [40]  parameterize  human  Gaussians  by  their
mean locations in a canonical space and their features from a
triplane,  but  they  do  not  take  pose-dependent  cloth
deformation into account. Some other methods [41,42] ignore
pose-dependent  fine  details  to  achieve  faster  training  and
rendering,  while  our  method  strikes  a  good  balance  between
realistic rendering and real-time performance. [38,43,44] focus
on  modeling  dynamic  humans  from  monocular  videos.  They
utilize additional regularization strategies, such as using MLPs
to compute Gaussian colors to mitigate overfitting, which are
orthogonal to our work. 

3    Method
 

3.1    Overview
Our  approach  takes  multi-view  human  videos  as  input.
Following  NeRF-based  methods  [4],  we  extract  foreground
human  masks  [45],  as  well  as  3D  human  poses  (i.e.,  joint
rotations  and  positions),  and  3D  human  bodies  (SMPL)  [1]
from the videos.

The overview of our animatable 3D Gaussian representation
is illustrated in Fig. 2. It includes a collection of 3D Gaussians
in  the  canonical  space  of  the  rest  pose  (Section  3.2).  Each
Gaussian  possesses  a  few  basic  properties  representing  the
average human  appearance  across  all  video  frames  (Fig. 2
left),  a  latent  code  for  Gaussian  correction  in  the  canonical
space  to  reflect  the  appearance  changes  under  a  novel  pose
(Fig. 2 middle),  and  a  set  of  blend  weights  for  transforming
the  corrected  Gaussians  to  the  target  pose  using  LBS  (Fig. 2
right).  We  will  discuss  how  to  learn  the  representation  in
Section 3.3 and Section 3.4. 

 

 

x α s r S H
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Fig. 2    Overview of our method. The animatable 3D Gaussian representation learns a collection of 3D Gaussians in the canonical space of the
rest pose from multi-view human videos. Each Gaussian is associated with the position , opacity , scale , rotation , spherical harmonics ,
along with  the  blend  weights  and  a  latent  code .  For  a  given  target  pose,  the  latent  code  and pose  are  fed  to  an  MLP  to  correct  each
Gaussian in the canonical space to capture the appearance changes under the target pose.  The corrected Gaussians are then transformed to the
target pose using LBS with their blend weights
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3.2    Animatable 3D Gaussians
{G1,G2, ...,GN}

xi

αi si ri

S Hi fi

wi

fi

We learn a collection of 3D Gaussians  in the
canonical  space  from  the  input  videos.  Each  Gaussian  is
associated  with  a  few  basic  properties  (i.e.,  position ,
opacity ,  anisotropic  scale ,  rotation ,  spherical
harmonics  coefficients ),  along  with  a  learnable  code 
and  a  set  of  blend  weights .  The  Gaussians  with  basic
properties  represent  the average human  appearance  in  the
canonical  space  across  all  video  frames.  The  latent  code 
serves as a pose-aware residual appearance embedding, which
is  fed  to  a  Gaussian  correction  model  with  a  target  pose,  to
correct  the  Gaussians  in  the  canonical  space  to  reflect  the
appearance change under the target pose.

fi

Θ ∈ RK×3 K

Fa

Specifically,  given  a  latent  code  and  a  target  pose
 represented  as  rotations  of  joints,  the  Gaussian

correction model is defined as an MLP :
 

{∆αi,∆si,∆ri,∆S Hi0} = Fa(Θ, fi). (1)
The  Gaussian  properties  are  corrected  accordingly  (with

position unchanged) as
 

α
∗
i = αi+∆αi,s

∗
i = si+∆si,r

∗
i = ∆riri,

S H∗i = {S Hi0+∆S Hi0,S Hi1,S Hi2,S Hi3}. (2)
Note  that  we  only  correct  the  zero-order  component  of
spherical  harmonics  (i.e.,  the  base  or  diffuse  color).  We  find
that  optimizing  higher-order  components  (i.e.,  the  view-
independent  color)  may  cause  ambiguity  between  pose-
dependent and view-dependent variations, leading to degraded
result in novel view and pose synthesis.

K K Pk ∈ S E(3)

Θk Jk

Gi

After  Gaussian  correction  in  the  canonical  space,  we  can
transform the corrected Gaussians to a target pose. We utilize
the SMPL human model [1] for this task. The human body has

 parts  with  transformation  matrices 
(computed from the joint rotations  and joint positions ).
For each Gaussian , its corresponding transformation is
 

Pi =

K∑

k=1

wikPk, (3)

wi = {wi1,wi2, ...,wiK}

xi

w0
i

F∆w : x→ ∆w(x)

wi = w0
i
+F∆w(xi) F∆w

wi

where  are  the  learned  blend  weights
stored with each Gaussian. For Gaussian position ,  we find
its  closest  point  and  corresponding  triangle  on  the  SMPL
surface,  and  obtain  the  initial  blend  weights  using
barycentric interpolation of the weights of triangle vertices. As
Gaussian  positions  keep  changing  during  training,  for
computation  efficiency,  we  follow  the  same  strategy  as  [4],
that is,  precomputing weights on a dense grid and computing
weights using interpolation in the grid during the training. The
initial  weights  may  be  inaccurate  for  Gaussians  that  are  far
way from the SMPL body and represent garments. We further
apply  a  positional  encoded  MLP  network  to  predict  residual
weights ,  and  the  final  blend  weights  are
computed  as .  Note  the  MLP  is  only
required  in  the  training  stage.  After  training,  the  final  is
stored with each Gaussian and directly fetched at runtime.

Pi

Si Ri Ti

The transformation  for  each Gaussian is  decomposed to
scaling ,  rotation ,  and  translation  [46].  We  omit  the
shear  component  to  prevent  Gaussians  from  distortion.  The

Gaussians are transformed as 

xt
i = Rix

∗
i +Ti,s

t
i = Si⊙ s∗i ,r

t
i = Rir

∗
i ,

S Ht
i = S H_Rotation(Ri,S H∗i ), (4)

⊙where  represents element-wise multiplication.
{Gt

i
}

Irender

The  transformed  Gaussians  are  finally  rendered  to
produce  high-quality  human  images  under  novel  views  and
poses.  We  apply  the  same  rasterizer  as  [9]  to  perform
differentiable rendering and obtain the rendered image . 

3.3    Training

{fi}

Fa F∆w Θ

J

Θ J

From  the  animatable  Gaussian  representation,  we  render  the
human  image  for  the  particular  pose  and  view  of  each  input
video frame to perform training. We jointly optimize the basic
Gaussian  properties,  latent  codes ,  as  well  as  the  MLP
parameters of  and . Noticing that the joint rotations 
and  joint  positions  estimated  from  SMPL  may  not  be
accurate, we also optimize  and  during training.

The  training  aims  to  minimize  the  following  loss  function
with five terms:
 

L = λ1Lrgb+λ2Lα+λ3Lw+λ4LD−S S IM +λ5Lp, (5)
λ1 = 0.8,λ2 = 10,λ3 = 0.2,λ4 = 0.2,λ5 = 0.2where  in  all  our

tests.
Lrgb L1

Irender Igt

Mb

n

n = 5

 is  the  image  loss  by  measuring  the  difference
between the rendered images  and the video frames .
We make use of a human boundary mask  when computing
the  image  loss.  The  boundary  mask  sets  pixels -pixel  away
from the human boundary 0 while all other pixels 1 (  in
our  tests).  We  find  that  this  simple  approach  effectively
prevent  Gaussians  from  fitting  the  zigzags  around  the
boundary. The image loss is computed as
 

Lrgb =

F∑

j=1

(||(I
j

render
− I

j
gt)⊙Mb||), (6)

F ⊙where  is  the  frame  number  and  is  the  pixelwise
multiplication.

Mh

Lα

Mh

Iopacity Lα

In  order  to  alleviate  the  background  interference  during
training, a simple scheme is to only compute the image loss on
the  human  region  defined  by  the  foreground  mask .
However,  we  find  this  scheme  cannot  prevent  the  Gaussians
from  growing  out  of  the  human  region.  To  overcome  this
problem,  we  design  an  alpha  loss  to  explicitly  constrain
Gaussians to stay within the human region, by comparing the
rendered  opacity  image  with  the  foreground  mask .
Specifically,  we  set  all  Gaussian  colors  to  pure  white  and
perform Gaussian splatting to obtain the accumulated opacity
image . The alpha loss  is thus defined as
 

Lα =

F∑

j=1

(||(I
j

opacity
−M

j

h
)⊙Mb||2). (7)

Lw  is  a blend weight loss to ensure that each Gaussian can
undergo  a  LBS  transformation  as  a  cohesive  unit  without
introducing  significant  errors.  The  LBS  transformation
establishes a continuous deformation field in 3D space, while
in  our  representation  each  Gaussian  is  transformed  as  a
cohesive unit, using the transformation of its center. Therefore
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Gi s
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i
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)}

the  transformation  of  Gaussians  is  an  approximation  of  the
continuous  LBS  transformation.  If  the  blend  weights  vary
greatly  within  a  Gaussian,  such  approximation  will  result  in
substantial  errors.  To  this  end,  we  impose  the  blend  weight
loss  to  suppress  the  standard  deviation  of  blend  weights  in
each  Gaussian.  Specifically,  for  each  Gaussian , 
corresponds to three scales  along the Gaussian axes

.  we  fetch  six  points  along  the  three  axes:
,  and  compute  their  corresponding  blend

weights , , .  The  blend  weight  loss  is
defined  as  the  standard  deviations  of  the  six  weights  on  all
Gaussians:
 

Lw =

N∑

i=i

std(w(p±1
i ),w(p±2

i ),w(p±3
i

)). (8)

LD−S S IM

Lp

The D-SSIM term  is the same as that in 3DGS [9].
 is the perceptual loss [47] as in UV Volume [6], which is

optional  and would generate  results  with  better  human visual
perception but at the cost of more training time. We compare
the  results  generated  with  and  without  the  perceptual  loss  in
Section 4. 

3.4    Implementation details

Fa F∆w Fa

F∆w

f

We  adopt  shallow  4-layer  MLPs  with  ReLU  activations  for
both  and . The hidden layer width of the MLP  and

 is  128 and 32,  respectively.  The dimension of  the latent
code  is  9,  which  is  initialized  by  positional  encoding  [3]
using the position of the Gaussian center at the beginning.

Fa

F∆w

Θ

To  enhance  the  training  stability,  we  divide  the  training
process into two stages. In the first stage (5000 iterations), we
disable  the  Gaussian  correction MLP  and residual  weight
prediction  MLP ,  and  only  optimize  the  basic  Gaussian
properties,  as  well  as  the  joint  parameters  in  input  video
frames,  which  is  equivalent  to  computing  an  average  human
model  across  all  input  video  frames.  In  the  second  stage,  we
enable the two MLPs and jointly optimize the MLP, Gaussian
and  joint  parameters.  It  should  also  be  noted  that  in  (1),  we
stop  the  gradient  of  to  disentangle  poses  from  the
appearance information.

To  avoid  falling  into  local  optima,  we  reset  Gaussian

Fa

opacities  every  fixed  number  of  iterations,  similar  to  3DGS
[9].  In  the  first  stage,  we  reset  the  opacity  at  the  3000th
iteration. In the second stage, we reset the opacity every 6000
iterations.  We  apply  a  similar  Gaussian  densification  and
pruning strategy as in 3DGS. The difference is that we use the
sum  of  the  gradients  from  the  alpha  and  RGB  loss  to
determine whether to densify Gaussians, which accelerates the
fitting  of  deformable  garments.  In  addition,  we  use  the  basic
Gaussian  scales  and  opacities  (i.e.,  without  the  corrected
values from ) to split or prune Gaussians, which keeps the
consistency across all poses. 

4    Experiments
We  conduct  experiments  on  a  workstation  with  an  i7-
13700KF CPU,  32  GB memory,  and  an  NVIDIA RTX 4090
GPU,  to  demonstrate  the  effectiveness  and  efficiency  of  our
method. We present quantitative results in Table 1 and Table 2
measured  with  three  standard  metrics:  PSNR,  SSIM,  and
LPIPS. Note that we use the whole image including the black
background  region  instead  of  the  masked  image  for  metric
evaluation.

512×512

1920×1080

665×575

1000×1000

Dataset. We perform experiments on the ZJU Mocap dataset
[7],  H36M  dataset  [48],  CMU  Panoptic  dataset  [49],  and
THUman4.0  [26],  which  include  multi-view  sequences,
calibrated camera parameters,  masks and poses (estimated by
EasyMocap).  We  use  20  training  views  on  the  ZJU  Mocap
dataset  with  resolution  and  the  CMU  Panoptic
dataset with  resolution, and 22 training views on
the THUman4.0 dataset with  resolution. To test our
method  under  sparse  view  input,  we  only  use  3  views  for
training on H36M dataset with  resolution.

Baselines. We validate our method by comparing it with two
representative  NeRF-based  human  avatar  synthesis  methods:
1)  AN:  Animatable  NeRF  [4];  2)  UV:  UV  Volume  [6].  We
further  compare our  method with  three  3DGS-based state-of-
the-art  methods:  1)  TexVocab:  Texture  Vocabulary  [50];
2)  AnimGS:  Animatable  Gaussians  [36];  3)  HuGS:  Human
Gaussian Splatting [39]. 

  

Lp

Table 1    Quantitative results of novel view synthesis. Our method outperforms NeRF-based baselines (AN [4] and UV [6]) on PSNR and SSIM and present
competitive LPIPS. After adding the perceptual loss , our method also achieves the best LPIPS

Datasets
ZJU H36M CMU

313 315 386 387 390 392 s1p s5p s6p s7p s8p s9p p1 p4 p6

↑PSNR 

AN 30.42 28.61 34.33 31.11 35.47 32.54 28.66 29.67 29.42 29.51 28.12 29.44 32.43 30.01 30.39
UV 32.20 28.87 36.61 31.16 36.26 32.49 28.80 30.12 29.50 29.49 28.50 29.25 32.94 31.95 31.76

LpOurs, w/ 33.70 30.81 37.98 32.55 37.40 33.54 33.21 34.64 33.46 34.11 32.36 33.16 34.83 32.56 32.32

LpOurs, w/o 33.32 30.50 37.97 32.42 37.41 33.21 33.10 34.76 33.16 33.73 32.29 33.14 34.86 32.61 32.32

↑SSIM 

AN 0.963 0.969 0.971 0.977 0.965 0.966 0.984 0.983 0.978 0.979 0.979 0.964 0.980 0.972 0.975
UV 0.977 0.979 0.987 0.977 0.988 0.976 0.981 0.985 0.977 0.984 0.982 0.977 0.984 0.981 0.980

LpOurs, w/ 0.990 0.989 0.992 0.989 0.994 0.984 0.992 0.993 0.992 0.994 0.991 0.989 0.993 0.990 0.989

LpOurs, w/o 0.990 0.989 0.993 0.988 0.994 0.983 0.992 0.994 0.991 0.994 0.992 0.990 0.993 0.989 0.989

↓LPIPS 

AN 0.041 0.034 0.036 0.040 0.027 0.061 0.026 0.023 0.029 0.024 0.026 0.028 0.042 0.056 0.053
UV 0.029 0.021 0.018 0.027 0.016 0.032 0.025 0.021 0.026 0.021 0.027 0.028 0.021 0.022 0.020

LpOurs, w/ 0.015 0.013 0.012 0.021 0.011 0.030 0.015 0.017 0.019 0.011 0.014 0.015 0.016 0.018 0.014

LpOurs, w/o 0.036 0.030 0.026 0.041 0.021 0.054 0.024 0.021 0.027 0.020 0.024 0.027 0.032 0.038 0.036
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4.1    Comparisons with baselines

Fa

Fa

Efficiency. Table 3 compares  the  training  and  rendering
performance of NeRF-based baselines with our method on the
ZJU  Mocap  dataset.  As  shown,  our  method  achieves  the
highest FPS, enabling real-time rendering on both novel view
and novel pose synthesis tasks, where the Gaussian correction
MLP  and the LBS procedure take 5.47 ms and 7.61 ms per
frame respectively. For novel view synthesis, we can cache the
outputs  of  the  Gaussian  correction  MLP  and  reach  the
same FPS reported  in  3DGS [9].  The  training  of  our  method
converges within 100 minutes, while the baselines need more
than  10  hours.  Note  that  without  the  perceptual  loss,  our
training time will reduce by approximately 30 minutes.

Novel view synthesis. We synthesize novel views of training
video  frames  on  the  ZJU  Mocap,  H36M  and  CMU  Panoptic
dataset.  As  shown  in Table 1,  our  method  is  consistently
superior to baselines in terms of all metrics. Particularly, in the
case of sparse training views of the H36M dataset, our method
outperforms [4,6] approximately by a margin of 4 in terms of
the  PSNR  metric,  clearly  demonstrating  the  generalization
ability  of  our  method.  Omitting  the  perceptual  loss  in  our
training does not  cause noticeable affection to  the PSNR and
SSIM metrics,  but leads to significant increases in the LPIPS
metric.  As  UV  Volume  uses  the  perceptual  loss,  it  achieves
better  results  in  terms  of  the  LPIPS  metric  than  our  method
without the perceptual loss training.

Figure 3 presents  the qualitative comparison of  our method
with  baselines.  In  all  examples,  Animatable  NeRF  [4]
generates  blurry  results  and some parts  of  the  body can even
disappear.  UV  Volume  is  better  at  synthesizing  texture  and
wrinkle  details,  but  may  introduce  details  unseen  in  ground
truth  images  (see Fig. 1).  More  importantly,  we  observe  that

the  texture  prediction  of  UV  Volume  is  inconsistent  across
different  poses,  resulting  in  jittering  artifacts  in  synthesized
videos  (see  the  supplementary  video).  Our  method  is  able  to
synthesize  videos  of  better  visual  quality  without  temporal
jittering.

Novel pose synthesis. We synthesize images with novel poses
unused  in  training  video  frames.  The  quantitative  results
compared  with  NeRF-based  baselines  on  the  ZJU  Mocap,
H36M, and CMU Panoptic dataset are shown in Table 2, and
the  results  compared  with  3DGS-based  baselines  on  the
THUman4.0  dataset  are  shown  in Table 4.  As  only  AnimGS
[36]  released  the  official  code,  we  further  present  the
qualitative  comparison  of  our  method  with  AnimGS  [36].
Similar to novel view synthesis, our method performs the best
in novel pose synthesis, in terms of the PSNR metric and the
SSIM  metric.  The  PSNR  improvements  can  be  up  to  6.5  on
the H36M dataset, clearly demonstrating the superiority of our
method  over  baselines.  Regarding  the  LPIPS  metric,
TexVocab [50]  applies  the  LPIPS loss  [47]  and gets  the  best
score  (0.013),  while  our  method  also  presents  comparable
results (0.014) after adding the LPIPS loss.

The qualitative comparisons are shown in Fig. 4 and Fig. 5.
Animatable NeRF [4] fails to preserve high-frequency details.
UV  Volume  exhibits  apparent  artifacts  in  novel  pose
synthesis,  such  as  arms  of  varying  widths.  In  contrast,  our
method preserves detailed spatially-varying textures of clothes
and always demonstrates robust shapes of body and limbs. 

4.2    Ablation studies

Fa

Fa

Fa

We  conduct  ablation  studies  on  sequence  313  of  the  ZJU
Mocap  dataset.  We  validate  the  impacts  of  several  possible
choices,  including  simple  combination  of  3DGS  and  LBS,
using  positional  encoding  as  the  input  of  the  Gaussian
correction MLP  instead of the latent code, only computing
image  loss  in  the  masked  region,  and  correcting  the  higher-
order  components  of  spherical  harmonics  with .  We  also
validate  the  necessity  of  some  modules  in  our  method,
including  the  optimization  of  joint  parameters,  Gaussian
correction  model ,  boundary  mask,  alpha  loss  and  blend

  
Table 2    Quantitative results of novel pose synthesis. Our method outperforms NeRF-based baselines (AN [4] and UV [6]) on PSNR and SSIM (especially on
H36M dataset) and presents competitive LPIPS. After adding the perceptual loss, our method shows the best LPIPS while the PSNR and SSIM are worse than
our method without the perceptual loss

Datasets
ZJU H36M CMU

313 315 386 387 390 392 s1p s5p s6p s7p s8p s9p p1 p4 p6

↑PSNR 

AN 30.81 28.24 35.20 29.55 33.88 31.32 31.34 32.66 32.15 30.24 30.88 31.47 28.83 27.66 27.54
UV 30.75 28.30 34.92 29.62 34.44 31.51 30.38 31.84 30.96 30.27 30.95 30.92 29.64 27.98 28.68

LpOurs, w/ 32.67 30.01 36.03 31.15 34.92 32.68 37.12 35.88 35.85 36.04 36.42 36.96 30.54 28.89 29.68

LpOurs, w/o 33.41 30.17 36.85 31.76 35.57 32.76 37.86 36.77 35.86 36.63 36.48 37.39 31.66 29.61 30.22

↑SSIM 

AN 0.971 0.973 0.969 0.975 0.970 0.970 0.990 0.988 0.986 0.983 0.985 0.991 0.953 0.958 0.941
UV 0.968 0.974 0.984 0.972 0.985 0.971 0.988 0.988 0.984 0.987 0.987 0.987 0.969 0.963 0.964

LpOurs, w/ 0.987 0.987 0.990 0.985 0.992 0.981 0.990 0.989 0.995 0.987 0.997 0.994 0.982 0.979 0.980

LpOurs, w/o 0.988 0.988 0.992 0.987 0.993 0.983 0.997 0.996 0.995 0.996 0.997 0.996 0.988 0.983 0.987

↓LPIPS 

AN 0.042 0.033 0.032 0.044 0.028 0.062 0.022 0.020 0.019 0.021 0.016 0.018 0.068 0.078 0.071
UV 0.039 0.024 0.020 0.030 0.017 0.039 0.019 0.017 0.018 0.017 0.017 0.018 0.039 0.049 0.038

LpOurs, w/ 0.017 0.010 0.012 0.021 0.014 0.036 0.009 0.009 0.011 0.008 0.011 0.008 0.039 0.042 0.039

LpOurs, w/o 0.036 0.030 0.030 0.045 0.026 0.057 0.013 0.017 0.018 0.014 0.013 0.015 0.053 0.062 0.057

 

Table 3    Comparison of the training and rendering performance of baselines
(AN [4] and UV [6]) and our method

AN UV Ours (w/o Lp) Ours (w/ Lp)
Training time 18 h 19 h 1.2 h 1.6 h
Novel view Syn. 3 fps 52 fps 114 fps 110 fps
Novel pose Syn. 0.06 fps 18 fps 66 fps 60 fps
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weight  loss,  respectively.  The  quantitative  results  are
summarized  in Table 5 and  the  qualitative  results  are
illustrated in Fig. 6.

Simple combination of 3DGS and LBS. We test a simple
combination  of  3DGS  and  LBS  by  omitting  the  Gaussian

correction model  and human joint  optimization.  As shown in
Fig. 6,  this  approach cannot  model  fine  details  very  well  and
exhibits joint dislocation in synthesized images.

Fa

Positional  encoding  versus  Latent  code. Our  Gaussian
correction  MLP  is  designed  to  compute  the  property

 

 
Fig. 3    Qualitative results of novel view synthesis on the ZJU Mocap and CMU Panoptic datasets

 

 
Fig. 4    Qualitative results of novel pose synthesis on the ZJU Mocap and CMU Panoptic datasets
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Fa

changes  of  each  Gaussian  under  a  target  pose.  A  simple
approach  is  to  use  positional  encoding  [3]  of  each  Gaussian
position and the target pose as the input to . Compared with
learning a  latent  code for  each Gaussian,  positional  encoding
generates inferior results lack of fine details. Using positional
encoding  of  higher  dimensions  (21  in  our  experiment)  or
deeper  MLP  may  alleviate  this  problem  but  would  severely

reduce the real-time performance.

Lα Lα

Lα

Image  loss  from  the  masked  region  only  versus  alpha
loss .  Our  alpha  loss  is  designed  to  explicitly  prevent
Gaussians from growing out of the human region. Computing
the  image  loss  from  the  masked  region  without  using 
would  produce  Gaussians  locating  outside  of  the  masked
region, which do not affect the image loss, but still contribute
to  the  final  rendering  and  cause  artifacts  in  novel  view  or
novel pose synthesis.

Fa

Correcting  all-order  versus  zero-order  components  of
spherical  harmonics. To  disentangle  pose-dependent  and
view-dependent  appearance  variations,  we  only  correct  the
zero-order  component  related  to  pose  transformation  by .
As illustrated in Fig. 6, correcting all-order components leads
to noisy results.

Necessity  of  human  joint  optimization. The  joint
parameters  provided  by  the  dataset  are  estimated  by
EasyMocap, which may not be very accurate. Inaccurate joint
positions  could  cause  unmooth  bending  of  joints  and
inaccurate joint rotations lead to blurring.

Necessity  of  the  boundary  mask. Gaussian  splatting
naturally  has  a  smooth  color  fade,  while  the  binary  human
masks have aliasing and mutation on the boundary. If we force
Gaussians  to  directly  fit  the  masked  image,  lots  of  tiny
Gaussians will be generated to match the boundary, which do
not improve the image quality, but bring noises.

Fa

Fa

Impacts of  and losses. Without the Gaussian correction
model , we can only model the average human appearance
across  all  training  video  frames  and  lose  all  pose-dependent
appearance  details.  The  alpha  loss  not  only  constrains  the
position  of  Gaussians  and  removes  the  background
interference,  but  also  makes  our  method able  to  better  model
garment movements. The blend weight loss ensures that each
Gaussian  can  undergo  a  transformation  as  a  cohesive  unit,
which prevents Gaussians from protruding outside the body in
novel poses. 

4.3    Limitation
Our method is able to synthesize high quality and temporally
stable  human  avatars  in  both  novel  views  and  novel  poses.
However, when the training views are too sparse, our method
tends  to  overfit  and  generates  inferior  results  in  novel  views.
Nevertheless, as shown in Fig. 7, our method still synthesizes

 

Table  4    Quantitative  results  of  novel  pose  synthesis  on  the  THUman4.0
dataset [26]. Our method outperfomrs 3DGS-based baselines (TexVocab [50],
AnimGS  [36],  and  HuGS  [39])  on  PSNR  and  SSIM.  After  adding  the
perceptual loss, our method also presents competitve LPIPS

↑PSNR ↑SSIM ↓LPIPS 
TexVocab [50] 32.09 0.983 0.013
AnimGS [36] 28.07 0.974 0.052
HuGS [39] 32.49 0.984 0.019

LpOurs w/ 32.68 0.992 0.014

LpOurs w/o 33.21 0.993 0.028

 

 
Fig. 5    Qualitative results of novel pose synthesis on the THUMan4.0 dataset

  
Table 5    Quantitative results of ablation studies

Ablations
Novel view synthesis Novel pose synthesis

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS 
Complete model 33.32 0.989 0.036 33.41 0.987 0.036
Simple 3DGS+LBS 28.56 0.976 0.083 29.56 0.976 0.081
Positional encoding 30.03 0.981 0.053 30.32 0.978 0.053
Only foreground 24.22 0.291 0.163 24.26 0.280 0.160
All-order SH 33.31 0.989 0.038 32.73 0.986 0.039
w/o first stage 25.80 0.965 0.077 25.81 0.961 0.080
w/o joints optim. 32.42 0.986 0.053 32.19 0.984 0.051
w/o boundary mask 32.10 0.986 0.044 32.41 0.984 0.044

Faw/o 29.50 0.981 0.075 29.99 0.979 0.073

Lαw/o 33.21 0.988 0.040 32.01 0.985 0.042

Lww/o 33.32 0.989 0.041 33.04 0.986 0.043
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stable  body  shapes  and  clothing  details,  outperforming
baselines  in  terms  of  all  metrics.  Besides,  when  the  garment
wrinkles change rapidly, our method may produce a transition
with  observable  noises.  Adding  more  constraints  or
introducing  prior  information  may  alleviate  these  problems.
When rapid motions are performed, the motion blur in training
data  may  reduce  the  reconstruction  quality.  Besides,  humans
in  complex  clothing  may  cause  artifacts  in  our  results  as
shown  in Fig. 8,  as  the  SMPL model  has  limited  capacity  of
representing  complex  clothing.  Building  a  skinned  template

with the corresponding clothing in advance should be able to
handle such situations.
 

5    Conclusion

We  present  an  animatable  3D  Gaussian  representation  for
rendering high-quality free-view dynamic humans in real time.
It  can  well  synthesize  high-frequency  and  pose-consistent
human  appearance  details.  Each  Gaussian  within  the
representation  is  associated  with  a  few  basic  properties
representing the average human appearance,  a latent code for
Gaussian correction to reflect appearance changes under novel
poses,  and a  set  of  blend weights  for  transforming Gaussians
to  target  poses  with  LBS.  Experiments  on  popular  datasets
demonstrate  that  our  model  achieves  the  best  image  quality
and  rendering  performance  in  novel  view  synthesis  of
dynamic humans under novel poses. Currently we segment the
human  from  the  background  for  training,  following  all  the
existing  NeRF-based  and  3DGS-based  animatable  human

 

 

Fa

Fa

Lα Lw

Fig. 6    Qualitative  results  of  ablation  studies.  Simple  combination  of  3DGS  and  LBS  (Simple  3DGS+LBS)  produces  blurring  and  joint
dislocation.  Using  positional  encoding  instead  of  the  latent  code  or  not  using  also  leads  to  blurring.  Only  computing  image  loss  from the
masked foreground (Only Foreground) causes Gaussian to spread into empty space. Correcting all-order SH by  (All-order SH) decreases the
efficiency of training, and also causes noises and artifacts in novel views. Without the initialization stage (w/o First Stage), training totally fails.
Without  joints  and  poses  optimization,  hands  may  disappear  in  some  cases.  Without  the  boundary  mask,  noises  and  zigzags  appear  on  the
boundary. Without the alpha loss , the result does not capture the garment movement well. Without the blend weight loss , some Gaussians
protrude outside the body in the novel pose

 

 
Fig. 7    Qualitative results of novel view synthesis on the H36M dataset. Due
to the lack of sufficient training views, the synthesized images are blurry and
distorted in test views

 

 
Fig. 8    Qualitative results of humans with complex clothing. Artifacts appear
when  garments  deform greatly,  due  to  the  limited  capacity  of  SMPL model
for representing clothing
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reconstruction  methods.  How  to  deal  with  frames  with
complex  backgrounds  is  an  interesting  direction  for  future
work. 
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